Chap. 4
Force System Resultants
Chapter Outline

- Moment of a Force – Scalar Formation
- Cross Product
- Moment of Force – Vector Formulation
- Principle of Moments
- Moment of a Force about a Specified Axis
- Moment of a Couple
- Simplification of a Force and Couple System
- Further Simplification of a Force and Couple System
- Reduction of a Simple Distributed Loading
Moment of a Force – Scalar Formation

- Moment of a force about a point or axis – a measure of the tendency of the force to cause a body to rotate about the point or axis
- Torque – tendency of rotation caused by F_x or simple moment $(M_o)_z$
Moment of a Force – Scalar Formation

Magnitude

- For magnitude of M_O,
 $$M_O = Fd \ (N\cdot m)$$
 where $d =$ perpendicular distance from O to its line of action of force

Direction

- Direction using “right hand rule”
Moment of a Force – Scalar Formation

Resultant Moment

- Resultant moment, \(M_{Ro} = \) moments of all the forces

\[
M_{Ro} = \sum Fd
\]
Cross Product

- Cross Product (vector product)
 \[\mathbf{C} = \mathbf{A} \times \mathbf{B} \]

- Magnitude
 \[\mathbf{C} = AB \sin \theta \quad 0^\circ \leq \theta \leq 180^\circ \]

- Direction

\[\mathbf{C} = (AB \sin \theta) \mathbf{u}_C \]
\[\mathbf{C} \perp \mathbf{A} \]
\[\mathbf{C} \perp \mathbf{B} \]
Cross Product

- **Laws of Operation**

\[A \times B = -B \times A \]
\[\alpha (A \times B) = (\alpha A) \times B = A \times (\alpha B) = (A \times B)\alpha \]

\[A \times (B + D) = (A \times B) + (A \times D) \]
\[A \times (D + B) = (A \times D) + (A \times B) \]
Cross Product

- Cartesian Vector Formulation

\[\mathbf{A} \times \mathbf{B} = (A_x, A_y, A_z) \times (B_x, B_y, B_z) \]

\[= (A_y B_z - A_z B_y)i + (A_z B_x - A_x B_z)j + (A_x B_y - A_y B_x)k \]

or

\[\mathbf{A} \times \mathbf{B} = \begin{vmatrix} i & j & k \\ A_x & A_y & A_z \\ B_x & B_y & B_z \end{vmatrix} \]

\[= A_x \begin{vmatrix} j & k \\ B_y & B_z \end{vmatrix} - A_y \begin{vmatrix} i & k \\ B_x & B_z \end{vmatrix} + A_z \begin{vmatrix} i & j \\ B_x & B_y \end{vmatrix} \]

\[= A_x (B_y - B_z) - A_y (B_x - B_z) + A_z (B_x - B_y) \]

\[= (A_y B_z - A_z B_y)i + (A_z B_x - A_x B_z)j + (A_x B_y - A_y B_x)k \]
Moment of a Force-Vector Formulation

$$M_O = r \times F = r_B \times F$$

$$M_O = r F \sin \theta = F (r \sin \theta) = Fd$$
Moment of a Force-Vector Formulation

- Transmissibility of a Force 傳遞性

\[\mathbf{M}_O = \mathbf{r}_A \times \mathbf{F} = \mathbf{r}_B \times \mathbf{F} = \mathbf{r}_C \times \mathbf{F} \]

\(A, B, C\) in the force \(\mathbf{F}\)’s action line
Moment of a Force-Vector Formulation

- Vector Formulation

\[
\mathbf{M}_O = \mathbf{r} \times \mathbf{F} = \begin{vmatrix} i & j & k \\ r_x & r_y & r_z \\ F_x & F_y & F_z \end{vmatrix}
\]
Moment of a Force-Vector Formulation

- Resultant Moment of a System of Forces

\[
\sum \mathbf{r} \times \mathbf{F} = \mathbf{M}_{RO}
\]
Example 4.4 Two forces act on the rod. Determine the resultant moment they create about the flange at O. Express the result as a Cartesian vector.

$\mathbf{F}_1 = \{-60\mathbf{i} + 40\mathbf{j} + 20\mathbf{k}\} \text{ kN}$

$\mathbf{F}_2 = \{80\mathbf{i} + 40\mathbf{j} - 30\mathbf{k}\} \text{ kN}$

$\mathbf{A}(0, 5, 0), \mathbf{B}(4, 5, -2)$
Position vectors are directed from point O to each force as shown.

These vectors are

$$r_A = \{5j\} \text{ m}$$

$$r_B = \{4i + 5j - 2k\} \text{ m}$$

The resultant moment about O is

$$\bar{M}_O = \sum (r \times F) = r_A \times F + r_B \times F$$

$$= \begin{vmatrix} i & j & k \\ 0 & 5 & 0 \\ -60 & 40 & 20 \end{vmatrix} + \begin{vmatrix} i & j & k \\ 4 & 5 & -2 \\ 80 & 40 & -30 \end{vmatrix}$$

$$= \begin{vmatrix} 30i - 40j + 60k \end{vmatrix} \text{ kN} \cdot \text{ m}$$
Principle of Moments – Varignon’s Theorem

\[M_0 = r \times F_1 + r \times F_2 + r \times F_3 + r \times F_4 + \ldots \]

\[= r \times (F_1 + F_2 + \ldots) \]

\[= r \times F \]

*合力對固定點的力矩
等於各分力對固定點的力矩之總合*
p. 133, 4–4. Two men exert forces of $F = 400$ N and $P = 250$ N on the ropes. Determine the moment of each force about A. Which way will the pole rotate, clockwise or counterclockwise?

\[
(M_A)_C = 400 \left(\frac{4}{5} \right) (3.6) = 1152 \text{ N} \cdot \text{m} \quad \text{Ans}
\]

\[
(M_A)_B = 250 (\cos 45^\circ) (5.4) = 954.6 \text{ N} \cdot \text{m} \quad \text{Ans}
\]

Since $(M_A)_C > (M_A)_B$

Clockwise \hspace{1cm} \text{Ans}
4–24. In order to raise the lamp post from the position shown, force \(F \) is applied to the cable. If \(F = 1000 \) N, determine the moment produced by \(F \) about point \(A \).
Geometry: Applying the law of cosines to Fig. a,

\[BC^2 = 3^2 + 6^2 - 2(3)(6) \cos 105^\circ \]

\[BC = 7.370 \text{ m} \]

Then, applying the law of sines,

\[\frac{\sin \theta}{3} = \frac{\sin 105^\circ}{7.37^\circ} \]

\[\theta = 23.15^\circ \]

Moment About Point A: By resolving force \(F \) into components parallel and perpendicular to the lamp pole, Fig. a, and applying the principle of moments,

\[(\Sigma M)_A = \Sigma Fd; \quad M_A = 1000 \sin 23.15^\circ (6) + 1000 \cos 23.15^\circ (0) \]

\[= 2358.8 \text{ N} \cdot \text{m} = 2.36 \text{ kN} \cdot \text{m} \text{ (counterclockwise)} \]

Ans.

4-1-18
The wheelbarrow and its contents have a center of mass at \(G \). If \(F = 100 \text{ N} \), and the resultant moment produced by force \(F \) and the weight about the axle at \(A \) is zero, determine the mass of the wheelbarrow and its contents.
Resolving force \mathbf{F} into its horizontal and vertical components, Fig. a, and applying the principle of moments,

$$\sum (M_R)_A = \Sigma Fd; \quad 0 = 100 \cos 30^\circ (1.15) + 100 \sin 30^\circ (1.5) - M(9.81)(0.3)$$

$$M = 59.3 \text{ kg}$$
The force \(F = \{6i + 8j + 10k\} \) N creates a moment about point \(O \) of \(M_O = \{-14i + 8j + 2k\} \) N\(\cdot\)m. If the force passes through a point having an \(x \) coordinate of 1 m, determine the \(y \) and \(z \) coordinates of the point. Also, realizing that \(M_O = Fd \), determine the perpendicular distance \(d \) from point \(O \) to the line of action of \(F \).
Chap. 4-2

Force System Resultants
Moment of a Force About a Specified Axis

- M_y for F about a specified axis (y-axis) is the moment, and is the projection of M_o on the y-axis.

1. Let O be any point on the y-axis, first find $M_o = \langle r \times F \rangle$

2. Then use the specific axis unit vector (\mathbf{j} in this example) and the dot product with M_o to find $M_y = M_o \cdot \mathbf{j}$

3. $M_y = [\mathbf{j} \cdot (r \times F)] \mathbf{j}$
Moment of a Force About a Specified Axis

Let $a-a'$ be an arbitrary axis.

The moment M_a of a force F about an axis $a-a'$ is given by:

$$M_a = M_O \cos \theta = M_O \cdot \underline{u}_a$$

$$= \underline{u}_a \cdot (\underline{r} \times \underline{F})$$

$$= \begin{vmatrix} u_{ax} & u_{ay} & u_{az} \\ r_x & r_y & r_z \\ F_x & F_y & F_z \end{vmatrix}$$

This is known as the **Triple scalar product**.

In Japanese:

純量三倍積
(平行六面體的體積)

$$M_a = M_a \underline{u}_a = \left[\underline{u}_a \cdot (\underline{r} \times \underline{F}) \right] \underline{u}_a$$
Determine the moment produced by force \mathbf{F} about segment AB of the pipe assembly. Express the result as a Cartesian vector.
Moment About Line AB: Either position vector \(\mathbf{r}_{AC} \) or \(\mathbf{r}_{BC} \) can be conveniently used to determine the moment of \(\mathbf{F} \) about line \(AB \).

\[
\mathbf{r}_{AC} = (3 - 0)i + (4 - 0)j + (4 - 0)k = [3i + 4j + 4k] \text{ m}
\]

\[
\mathbf{r}_{BC} = (3 - 3)i + (4 - 4)j + (4 - 0)k = [4k] \text{ m}
\]

The unit vector \(\mathbf{u}_{AB} \), Fig. 1, that specifies the direction of line \(AB \) is given by

\[
\mathbf{u}_{AB} = \frac{(3 - 0)i + (4 - 0)j + (0 - 0)k}{\sqrt{(3 - 0)^2 + (4 - 0)^2 + (0 - 0)^2}} = \frac{3}{5}i + \frac{4}{5}j
\]

Thus, the magnitude of the moment of \(\mathbf{F} \) about line \(AB \) is given by

\[
M_{AB} = \mathbf{u}_{AB} \cdot \mathbf{r}_{AC} \times \mathbf{F} = \begin{vmatrix}
3 & 4 & 0 \\
\frac{4}{5} & 5 & 0 \\
3 & 4 & 4 \\
-20 & 10 & 15
\end{vmatrix}
\]

\[
= \frac{3}{5}[4(15) - 10(4)] - \frac{4}{5}[3(15) - (-20)(4)] + 0
\]

\[=-88 \text{ N} \cdot \text{m}\]
or

\[M_{AB} = u_{AB} \cdot \mathbf{r}_{BC} \times \mathbf{F} = \begin{vmatrix} 3 & 4 & 0 \\ \frac{3}{5} & \frac{4}{5} & 0 \\ 0 & 0 & 4 \\ -20 & 10 & 15 \end{vmatrix} \]

\[= \frac{3}{5}[0(15) - 10(4)] - \frac{4}{5}[0(15) - (-20)(4)] + 0 \]

\[= -88 \text{ N} \cdot \text{m} \]

Thus, \(M_{AB} \) can be expressed in Cartesian vector form as

\[M_{AB} = M_{AB} \mathbf{u}_{AB} = -88 \left(\frac{3}{5} \mathbf{i} + \frac{4}{5} \mathbf{j} \right) = [-52.8 \mathbf{i} - 70.4 \mathbf{j}] \text{ N} \cdot \text{m} \quad \text{Ans.} \]
The A-frame is being hoisted into an upright position by the vertical force of $F = 400 \text{ N}$. Determine the moment of this force about the y axis when the frame is in the position shown.
Using x', y', z:

$u_y = -\sin 30^\circ i' + \cos 30^\circ j'$

$r_{Ac} = -2 \cos 15^\circ i' + 1j' + 2 \sin 15^\circ k$

$F = 400k$

$$M_y = \begin{vmatrix}
-\sin 30^\circ & \cos 30^\circ & 0 \\
-2 \cos 15^\circ & 1 & 2 \sin 15^\circ \\
0 & 0 & 400
\end{vmatrix} = -200 + 669.2 + 0$$

$M_y = 469.2 \text{ N}\cdot\text{m} \quad \text{Ans}$
Also, using \(x, y, z \).

Coordinates of point \(C \):

\[
x = 1 \sin 30^\circ - 2 \cos 15^\circ \cos 30^\circ = -1.173 \text{ m}
\]

\[
y = 1 \cos 30^\circ + 2 \cos 15^\circ \sin 30^\circ = 1.832 \text{ m}
\]

\[
z = 2 \sin 15^\circ = 0.518 \text{ m}
\]

\[\mathbf{r}_{AC} = -1.173\mathbf{i} + 1.832\mathbf{j} + 0.518\mathbf{k}\]

\[\mathbf{F} = 400\mathbf{k}\]

\[
M_y = \begin{vmatrix} 0 & 1 & 0 \\ -1.173 & 1.832 & 0.518 \\ 0 & 0 & 400 \end{vmatrix} = 469.2 \text{ N} \cdot \text{m} \quad \text{Ans}
\]
Moment of a Couple 力偶

\[\mathbf{M}_O = \mathbf{r}_A \times (-\mathbf{F}) + \mathbf{r}_B \times (\mathbf{F}) \]
\[= (\mathbf{r}_B - \mathbf{r}_A) \times \mathbf{F} \]
\[= \mathbf{r}_{AB} \times \mathbf{F} \]
\[= \mathbf{r} \times \mathbf{F} \]
Moment of a Couple

- **Scalar Formulation**
 \[M = Fd \]

- **Vector Formulation**
 \[\mathbf{M} = \mathbf{r} \times \mathbf{F} \]
Moment of a Couple

- Equivalent Couples
 等效

- Resultant Couple Moment
 合力偶 力偶合

\[M = |50| N \cdot m \]

\[200 \text{ N} \quad 0.25 \text{ m} \]

\[100 \text{ N} \quad 0.5 \text{ m} \]

\[M = |50| N \cdot m \]

\[M_1 \]

\[M_2 \]

\[M_3 \]

\[M_4 \]
Example 4.12

Determine the couple moment acting on the pipe. Segment AB is directed 30° below the x–y plane.
SOLUTION I (VECTOR ANALYSIS)

Take moment about point O,
\[\mathbf{M} = \mathbf{r}_A \times (-250\mathbf{k}) + \mathbf{r}_B \times (250\mathbf{k}) \]
\[= (0.8\mathbf{j}) \times (-250\mathbf{k}) + (0.6\cos30^\circ\mathbf{i} + 0.8\mathbf{j} - 0.6\sin30^\circ\mathbf{k}) \times (250\mathbf{k}) \]
\[= \{-130\mathbf{j}\}\text{N.cm} \]

Take moment about point A
\[\mathbf{M} = \mathbf{r}_{AB} \times (250\mathbf{k}) \]
\[= (0.6\cos30^\circ\mathbf{i} - 0.6\sin30^\circ\mathbf{k}) \times (250\mathbf{k}) \]
\[= \{-130\mathbf{j}\}\text{N.cm} \]
Take moment about point A or B,
\[M = Fd = 250N(0.5196m) \]
\[= 129.9N.cm \]
Apply right hand rule, \(M \) acts in the \(-\mathbf{j}\) direction \(\mathbf{M} = \{-130\mathbf{j}\}N.cm \)
p.155 Problem 76
Determine the required magnitude of force \mathbf{F} if the resultant couple moment on the frame is 200 N·M, clockwise.
\((M_c)_1 = F \left(\frac{4}{5} \right) (0.2) + F \left(\frac{3}{5} \right) (0.2) = 0.28F \)

\((M_c)_2 = -1500 \cos 30^\circ \ (0.4) - 1500 \sin 30^\circ \ (0.4) = -819.62 \text{ N} \cdot \text{m} = 819.62 \text{ N} \cdot \text{m} \)

The resultant couple moment acting on the beam is required to be 200 N·m, clockwise. Thus,

\((M_c)_R = (M_c)_1 + (M_c)_2 \)

\(-200 = 0.28F - 819.62 \)

\(F = 2213 \text{ N} \) \hspace{1cm} \text{Ans.} \)
Determine the required magnitude of couple moments so that the resultant couple moment is $\mathbf{MR} = \{-300\mathbf{i} + 450\mathbf{j} - 600\mathbf{k}\}$ N\cdot m.
\[M_1 = M_1 j \]
\[M_2 = M_2 (-\cos 30^\circ i - \sin 30^\circ k) = -0.8660 M_2 i - 0.5 M_2 k \]
\[M_3 = -M_3 k \]

The resultant couple moment is given by

\[(M_c)_R = \Sigma M; \]
\[(M_c)_R = M_1 + M_2 + M_3 \]
\[(-300i + 450j - 600k) = M_1 j + (-0.8660 M_2 i - 0.5 M_2 k) + (-M_3 k) \]
\[-300i + 450j - 600k = -0.8660 M_2 i + M_1 j - (0.5 M_2 + M_3) k \]

Equating the i, j, and k components yields

\[-300 = -0.8660 M_2 \quad M_2 = 346.41 \text{ N} \cdot \text{m} = 346 \text{ N} \cdot \text{m} \quad \text{Ans.} \]

\[M_1 = 450 \text{ N} \cdot \text{m} \quad \text{Ans.} \]

\[600 = -0.5(346.41) + M_3 \quad M_3 = 427 \text{ N} \cdot \text{m} \quad \text{Ans.} \]

4-2-19
If $F_1 = 500 \text{ N}$ and $F_2 = 1000 \text{ N}$, determine the magnitude and coordinate direction angles of the resultant couple moment.
\[\mathbf{r}_1 = [-0.6 \mathbf{k}] \text{ m} \quad \mathbf{r}_2 = [0.6 \mathbf{k}] \text{ m} \quad \mathbf{r}_3 = [0.6 \mathbf{k}] \text{ m} \]

The force vectors \(\mathbf{F}_1, \mathbf{F}_2, \) and \(\mathbf{F}_3 \) are given by

\[\mathbf{F}_1 = [500 \mathbf{j}] \text{ N} \quad \mathbf{F}_2 = [1000 \mathbf{i}] \text{ N} \]

\[\mathbf{F}_3 = \mathbf{F}_3 \mathbf{u} = 1250 \left[\frac{(0 - 0.9) \mathbf{i} + (1.2 - 0) \mathbf{j} + (0.6 - 0.6) \mathbf{k}}{\sqrt{(0 - 0.9)^2 + (1.2 - 0)^2 + (0.6 - 0.6)^2}} \right] = [-750 \mathbf{i} + 1000 \mathbf{j}] \text{ N} \]

Thus,

\[\mathbf{M}_1 = \mathbf{r}_1 \times \mathbf{F}_1 = (-0.6 \mathbf{k}) \times (500 \mathbf{j}) = [300 \mathbf{i}] \text{ N} \cdot \text{m} \]

\[\mathbf{M}_2 = \mathbf{r}_2 \times \mathbf{F}_2 = (0.6 \mathbf{k}) \times (1000 \mathbf{i}) = [600 \mathbf{j}] \text{ N} \cdot \text{m} \]

\[\mathbf{M}_3 = \mathbf{r}_3 \times \mathbf{F}_3 = (0.6 \mathbf{k}) \times (-750 \mathbf{i} + 1000 \mathbf{j}) = [-600 \mathbf{i} - 450 \mathbf{j}] \text{ N} \cdot \text{m} \]

Resultant Moment: The resultant couple moment is given by

\[(\mathbf{M}_C)_R = \Sigma \mathbf{M}_C; \quad (\mathbf{M}_C)_R = \mathbf{M}_1 + \mathbf{M}_2 + \mathbf{M}_3 = (300 \mathbf{i}) + (600 \mathbf{j}) + (-600 \mathbf{i} - 450 \mathbf{j}) = [-300 \mathbf{i} + 150 \mathbf{j}] \text{ N} \cdot \text{m} \]
The magnitude of the couple moment is

\[(M_C)_R = \sqrt{[(M_C)_R]^2_x + [(M_C)_R]^2_y + [(M_C)_R]^2_z} \]
\[= \sqrt{(-300)^2 + (150)^2 + (0)^2} \]
\[= 335.41 \text{ N} \cdot \text{m} = 335 \text{ N} \cdot \text{m} \]

The coordinate angles of \((M_C)_R\) are

\[\alpha = \cos^{-1}\left(\frac{[(M_C)_R]^2_x}{(M_C)_R}\right) = \cos^{-1}\left(\frac{-300}{335.41}\right) = 153.4^\circ \]

\[\beta = \cos^{-1}\left(\frac{[(M_C)_R]^2_y}{(M_C)_R}\right) = \cos^{-1}\left(\frac{150}{335.41}\right) = 63.4^\circ \]

\[\gamma = \cos^{-1}\left(\frac{[(M_C)_R]^2_z}{(M_C)_R}\right) = \cos^{-1}\left(\frac{0}{335.41}\right) = 90^\circ \]
Chap. 4-3
Force System Resultants
Simplification of a Force and Couple System

- An equivalent system is when the *external effects* are the same as those caused by the original force and couple moment system.
- External effects of a system is the *translating and rotating motion* of the body.
- Or refers to the *reactive forces* at the supports if the body is held fixed.

![Diagram](image-url)
Equivalent System

- Point O is On the Line of Action
 - [Images showing the equivalence of forces when O is on the line of action]

- Point O Is Not On the Line of Action
 - [Images showing the moment arm and the resultant force when O is not on the line of action]
Equivalent System

- Resultant of a Force and Couple System

Force Summation: \(F_R = \sum F \)

Moment Summation: \(M_{RO} = \sum M_C + \sum M_o \)
Ex. 4-15, replace the system by an equivalent resultant force and couple moment acting on point O.

\[
\begin{align*}
\mathbf{F}_1 &= -800 \mathbf{kN} \\
\mathbf{u}_{CB} &= \frac{(-0.15, 0.1, 0)}{\sqrt{(-0.15)^2 + 0.1^2}} \\
\mathbf{F}_2 &= 300 \cdot \mathbf{u}_{CB} = (-249.6, 166.4, 0) \mathbf{N} \\
\mathbf{M} &= (0, -400, 300) \mathbf{N} \cdot \mathbf{m} \\
\sum \mathbf{F} &= (-250, 166.4, -800) \mathbf{N} \\
\mathbf{M}_{RO} &= \mathbf{M} + \mathbf{r}_C \times \mathbf{F}_1 + \mathbf{r}_B \times \mathbf{F}_2 \\
&= (0, -400, 300) + \begin{vmatrix}
i & j & k \\
-0.15 & 0.1 & 1 \\
-249.6 & 166.4 & 0 \\
\end{vmatrix} \\
&= (-166.4, -650, 300) \mathbf{N} \cdot \mathbf{m}
\end{align*}
\]
Replace the force system acting on the pipe assembly by a resultant force and couple moment at point O. Express the results in Cartesian vector form.

\[F_1 = \{-20i - 10j + 25k\} \text{ N} \]
\[F_2 = \{-10i + 25j + 20k\} \text{ N} \]
Equivalent Resultant Force: The resultant force F_R can be determined from

$$F_R = \sum F; \quad F_R = F_1 + F_2$$

$$= (-20i - 10j + 25k) + (-10i + 25j + 20k)$$

$$= [-30i + 15j + 45k] \text{ N} \quad \text{Ans.}$$

Equivalent Resultant Couple Moment: The position vectors r_{OA} and r_{OB}, are

$$r_{OA} = (0.15 - 0)i + (0.2 - 0)j + (0 - 0)k = [0.15i + 0.2j] \text{ m}$$

$$r_{OB} = (0.15 - 0)i + (0.4 - 0)j + (0.2 - 0)k = [0.15i + 0.4j + 0.2k] \text{ m}$$

Thus, the resultant couple moment about point O is

$$M_w = \sum F_O; \quad (M_R)_O = r_{OA} \times F_1 + r_{OB} \times F_2$$

$$= \begin{vmatrix} i & j & k \\ 0.15 & 0.4 & 0.2 \\ -10 & 25 & 20 \end{vmatrix} + \begin{vmatrix} i & j & k \\ 0.15 & 0.4 & 0.2 \\ -10 & 25 & 20 \end{vmatrix}$$

$$= [8i - 8.75j + 10.25k] \text{ N} \cdot \text{m} \quad \text{Ans.}$$
Further Reduction of a Force and Couple System

\[M_{RO} = F_R d \]
Further Simplification of a Force and Couple System

Concurrent Force System

- A concurrent force system is where lines of action of all the forces intersect at a common point O

\[
F_R = \sum F
\]
Further Simplification of a Force and Couple System

Coplanar Force System

- Lines of action of all the forces lie in the same plane
- Resultant force of this system also lies in this plane
Further Simplification of a Force and Couple System

Parallel Force System

- Consists of forces that are all parallel to the z axis
- Resultant force at point O must also be
Further Simplification of a Force and Couple System

Reduction to a Wrench (扳手)

\[\overrightarrow{M}_R = \overrightarrow{M}_\parallel + \overrightarrow{M}_\perp \]

\[d = \frac{M_\perp}{F_R} \]
p. 180, 4-124. Replace the force and couple moment system acting on the overhang beam by a resultant force, and specify its location along AB measured from point A.
\((F_r)_x = 5\, \text{KN} \)

\((F_r)_y = 49.98\, \text{KN} \)
Equivalent Resultant Force: Forces \mathbf{F}_1 and \mathbf{F}_2 are resolved into their x and y components, Fig. a. Summing these force components algebraically along the x and y axes,

$$
\sum (F_R)_x = \Sigma F_x; \quad (F_R)_x = 26 \left(\frac{5}{13} \right) - 30 \sin 30^\circ = -5 \text{ kN} = 5 \text{ kN} \quad \leftarrow \\
+ \uparrow (F_R)_y = \Sigma F_y; \quad (F_R)_y = -26 \left(\frac{12}{13} \right) - 30 \cos 30^\circ = -49.98 \text{ kN} = 49.98 \text{ kN} \quad \downarrow
$$

The magnitude of the resultant force \mathbf{F}_R is given by

$$
F_R = \sqrt{(F_R)_x^2 + (F_R)_y^2} = \sqrt{5^2 + 49.98^2} = 50.23 \text{ kN} = 50.2 \text{ kN} \quad \text{Ans.}
$$

The angle θ of \mathbf{F}_R is

$$
\theta = \tan^{-1} \left[\frac{(F_R)_y}{(F_R)_x} \right] = \tan^{-1} \left[\frac{49.98}{5} \right] = 84.29^\circ = 84.3^\circ \quad \text{Ans.}
$$

Location of Resultant Force: Applying the principle of moments, Figs. a and b, and summing the moments of the force components algebraically about point A,

$$
\sum (M_R)_A = \Sigma M_A; -49.98(d) = 30 \sin 30^\circ(0.3) - 30 \cos 30^\circ(2) - 26 \left(\frac{5}{13} \right)(0.3) - 26 \left(\frac{12}{13} \right)(6) - 45
$$

$$
d = 4.79 \text{ m} \quad \text{Ans.}
$$
p.182, 4-140. Replace the three forces acting on the plate by a wrench. Specify the magnitude of the force and couple moment for the wrench and the point $P(y, z)$ where its line of action intersects the plate.
Resultant Force Vector:

\[\mathbf{F}_R = \{ -40i - 60j - 80k \} \text{ kN} \]

\[F_R = \sqrt{(-40)^2 + (-60)^2 + (-80)^2} = 107.70 \text{ kN} = 108 \text{ kN} \quad \text{Ans} \]

\[\mathbf{u}_{F_R} = \frac{-40i - 60j - 80k}{107.70} \]
\[= -0.3714i - 0.5571j - 0.7428k \]

Resultant Moment: The line of action of \(\mathbf{M}_R \) of the wrench is parallel to the line of action of \(\mathbf{F}_R \). Assume that both \(\mathbf{M}_R \) and \(\mathbf{F}_R \) have the same sense. Therefore, \(\mathbf{u}_{M_R} = -0.3714i - 0.5571j - 0.7428k \).

\[(M_R)_x = \Sigma M_x; \quad -0.3714M_R = 60(3 - z) + 80y \quad [1] \]
\[(M_R)_y = \Sigma M_y; \quad -0.5571M_R = 40z \quad [2] \]
\[(M_R)_z = \Sigma M_z; \quad -0.7428M_R = 40(3 - y) \quad [3] \]

Solving Eqs. [1], [2], and [3] yields:

\[M_R = -156.0 \text{ N\cdot m} \quad z = 2.172 \text{ m} \quad y = 0.103 \text{ m} \quad \text{Ans} \]

The negative sign indicates that the line of action for \(\mathbf{M}_R \) is directed in the opposite sense to that of \(\mathbf{F}_R \).
Reduction of a Simple Distributed Loading
Reduction of a Simple Distributed Loading

- **Magnitude**
 \[F_R = \int_0^L w(x)dx = \int_A dA = A \]

- **Location**
 \[\sum M_O = M_{RO} : \]
 \[\int xw(x)dx = \bar{x}F_R \]
 \[\Rightarrow \bar{x} = \frac{\int_A xdA}{\int_A dA} = \frac{\int x dA}{A} \]
p.189, 4-144. Replace the distributed loading by an equivalent resultant force and specify its location, measured from point A.
\[+ \downarrow F_R = \Sigma F; \quad F_R = 1600 + 900 + 600 = 3100 \text{ N} \]

\[F_R = 3.10 \text{ kN} \downarrow \quad \text{Ans} \]

\[+ \uparrow M_{PA} = \Sigma M_A; \quad x(3100) = 1600(1) + 900(3) + 600(3.5) \]

\[x = 2.06 \text{ m} \quad \text{Ans} \]
Wind has blown sand over a platform such that the intensity of the load can be approximated by the function \(w = (0.5x^3) \text{ N/m} \). Simplify this distributed loading to an equivalent resultant force and specify the magnitude and location of the force, measured from A.

\[
\begin{align*}
\text{dA} &= w \, dx \\
F_R &= \int dA = \int_0^{10} \frac{1}{2} x^3 \, dx \\
&= \left[\frac{1}{8} x^4 \right]_0^{10} \\
&= \frac{1250}{8} \text{N} \\
F_R &= 1.25 \text{kN} \quad \text{Ans}
\end{align*}
\]

\[
\begin{align*}
\int x \, dA &= \int_0^{10} \frac{1}{2} x^4 \, dx \\
&= \left[\frac{1}{10} x^5 \right]_0^{10} \\
&= \frac{10000}{10} \text{N} \cdot \text{m} \\
x &= \frac{10000}{1250} = 8.00 \text{ m} \quad \text{Ans}
\end{align*}
\]
p.192, 4-160. The distributed load acts on the beam as shown. Determine the magnitude of the equivalent resultant force and specify its location, measured from point A.
\[F_R = \int w(x) \, dx = \int_0^{10} \left(-\frac{2}{15} x^2 + \frac{17}{15} x + 4 \right) \, dx = 52.22 = 52.2 \, \text{kN} \quad \text{Ans} \]

\[\bar{x} = \frac{\int x \, w(x) \, dx}{\int w(x) \, dx} = \frac{\int_0^{10} x \left(-\frac{2}{15} x^2 + \frac{17}{15} x + 4 \right) \, dx}{52.22} = \frac{244.44}{52.22} \quad \text{Ans} \]

\[\bar{x} = 4.68 \, \text{m} \quad \text{Ans} \]