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CHAPTER FIVE 

Power Series 
 

§5-1  Introduction and Review of Real Series  
 

1.    Examples of power series 

1)  
2 3

0
1

! 2! 3!

n
x

n

x x xe x
n

∞

=
= = + + + +∑   (1) 

2)  
2

1
0

1 ( 1) 1 ( 1) ( 1)
1 2 4 82

n

n
n

x x x
x

∞

+
=

+ + +
= = + + +

− ∑   (2) 

 
2.    Power series expansion of real function ⎯ Taylor series 

2
0 0 1 0 2 0 0

0
( ) ( ) ( ) ( ) ( )n n

n n
n

f x c x x c c x x c x x c x x
∞

=
= − = + − + − + + − +∑   (3) 

where  
( )

0( )
!

n

n
f xc

n
= .   (4) 

 
3.   Applications of power series 

1)  Numerical approximation for integral 
Example  

0.2

0
( 1) /xe xdx−∫   replaced by its Taylor seriesxe⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯→   

0.2

0
(1 / 2)x dx+∫  

2)  Evaluation of the sum of infinite power series 
Example 

For Eq. (2), substituting 1/ 2x = −  gives 
2 1 1 1 1
3 2 8 32 128
= + + + +  

 
♣   Some difficulties  

1)  Not all functions of x have a Taylor series expansion. 
Example 

1/ 2

0

n
n

n
x c x

∞

=
= ∑   ⇒  Since x1/2 does not possess a first- or higher-order derivative at 0x =  

2)  Limitation in convergence of the sum of infinite series 
Example 

With 2x = on both sides in Eq. (2), we obtain 
1 3 91
2 4 8

− = + + +   ⇒  Clearly, the infinite sum will not yield the numerical value 1− . 

 
 
§5-2  Complex Sequence and Convergence of Complex Series  
 

1.   Definition (convergence and limit of a complex sequence) 
The infinite sequence 1 2 3( ), ( ), ( ), , , ( ),np z p z p z p z  converges and is said to have a limit 

( )P z , for a value of z lying in some region R, if given a constant 0> we can find a number N 
such that 

( ) ( )nP z p z− <  for all n N>      (1) 
We then write 

lim ( ) ( )n
n

p z P z
→∞

=    (2) 
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Example 1   
For the sequence 1 ze−+ , 21 ze−+ , 31 ze−+ , …, 1 nze−+ , …, show that the limit is 1 if 

Re( ) 0x z= >  
<pf.> 

With ( ) 1P z = , ( ) 1 nz
np z e−= +  and with 0 1< < , we employ Eq.(1) and obtain the requirement 

1 1nz nze e− −− − = < , for n N> . 

This is equivalent to 
nxe− <   or  1nxe < , for n N> . 

⇒      1 1lnn
x

⎛ ⎞> ⎜ ⎟
⎝ ⎠

 

If we take N as the integer that equals or exceeds the positive quantity 1 1ln
x

⎛ ⎞
⎜ ⎟
⎝ ⎠

, then the condition 

nze− <  will be satisfied for all n N> . 

Note the necessity for our having chosen x as positive as it guarantees that 
      ( 1) ( 2)Nx N x N xe e e− − + − +> >  

i.e. if nze− <  is satisfied for n N= , then it is satisfied for all n N> . 

Since we take 
1 1lnN
x

⎛ ⎞≥ ⎜ ⎟
⎝ ⎠

 

it is clear that N depends on both Re( )x z= and , and grows as  shrinks. 

⇒      ( )lim 1 1nz
n

e−
→∞

+ =  

 
2.   Limits of complex sequences 

If ( ) ( ) ( )n n np z v z iw z= +  and ( ) ( ) ( )P z V z iW z= + ( nv , nw , V , W are real functions), then 
1) lim ( )n

n
p z P

→∞
=  if and only if lim ( )n

n
v z V

→∞
=  and lim ( )n

n
w z W

→∞
=  

2)  If lim ( )n np z P→∞ = and lim ( )n nq z Q→∞ = , then 
a)  [ ]lim ( ) ( )n n

n
p z q z P Q

→∞
+ = +  

b)  [ ]lim ( ) ( )n n
n

p z q z PQ
→∞

=  

c)  [ ]lim ( ) / ( ) /n n
n

p z q z P Q
→∞

= , if 0Q ≠  

3.   Some useful limits 
1) lim 0n

n
r

→∞
= , if 1r < . 

2) lim 0k n
n

n r
→∞

= , if 1r < , k real. 

3) ( )lim 1 / n x
n

x n e
→∞

+ = , x real. 

 
Example 2 

Using the result ( )lim 1 1/ n

n
n e

→∞
+ =⎡ ⎤⎣ ⎦ , find the limit of the sequence ( )1 (1 1/1)ze−+ + , 

( )2 21 (1 1/ 2)ze−+ + , ( )3 31 (1 1/ 3)ze−+ + , …, ( )1 (1 1/ )nz ne n−+ + , … for Re( ) 0z > . 

<Sol.> 
Taking ( ) 1 nz

np z e−= + , 1P = , (1 1/ )n
nq n= + , Q e= , we have 

[ ]lim ( ) ( )n n
n

p z q z PQ e
→∞

= =  
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4.   Series and partial sum 

1) Series: 1 2
1

( ) ( ) ( )j
j

u z u z u z
∞

=
+ + = ∑  

2) Partial sum: 
1

( ) ( )
n

n j
j

S z u z
=

= ∑  

Example:    1 1( ) ( )S z u z=  

2 1 2( ) ( ) ( )S z u z u z= +  

3 1 2 3( ) ( ) ( ) ( )S z u z u z u z= + +  
 

5.   Definition for Ordinary Convergence 
For a convergent series that, given 0> , there exists an integer ( , )N z  such that 

( ) ( )nS z S z− < , for all >n N . 

lim ( ) ( )n
n

S z S z
→∞

=   ⇒  
1

( ) ( )j
j

S z u z
∞

=
= ∑  

♣ The set of all values of z for which the series converges is called its region of convergence (ROC). 
 

Example 3 
Show that 

1 2

1

11 ... ( ) , 1.
1

j

j

z z z S z z
z

∞
−

=

= + + + = = <
−∑     (A) 

<pf.> 
The n-th partial sum is 

2 1( ) 1 ... n
nS z z z z −= + + + +  

⇒      ( ) ( )2 1 2( ) ( ) 1 ... ... 1n n n
n nS z zS z z z z z z z z−− = + + + + − + + + = −  

so that 
(1 ) ( ) 1 n

nz S z z− = −  
Or, for 1z ≠  

2 11( ) 1 ... .
1

n
n

n
zS z z z z
z

−−
= = + + + +

−
   (a) 

Since the sum in Eq. (A) is ( ) 1/(1 )S z z= − , we have 

1 (1 )( ) ( ) .
1 1

nn

n
zzS z S z

z z
− −

− = =
− −

    (b) 

Referring the above definition, we require for convergence that 

1

nz
z
<

−
, for n N>    (c) 

or that 

1 1
.

1

n

z z
>

−
 

Taking logarithms of the preceding, we obtain 
1 1

Ln Ln .
1

n
z z
>

−
 

Inside the disc 1z < , we have 1/ 1z >  and Ln 1/ 0z > . The above inequality can be rearranged as 
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( )
1

Ln
Ln Ln 11

1 LnLn

zz
n

z
z

−−
> =

⎛ ⎞
⎜ ⎟
⎝ ⎠     (d) 

If we choose N as appositive integer that equals or exceeds the right side of Eq. (d) and take n N> , 
then Eq. (c) is satisfied. Hence,  

( ) ( )nS z S z− < , for all n N>    ------------  Q.E.D. (Quod erat demonstradum!) 
 

Example 4 

Given infinite series 2
0

1 ......i n z i z i z
n

e e e∞

=
= + + +∑ , find its region of convergence. 

<Sol.> 
We know that 

2 11 ...... , 1.
1

iz i z iz
ize e e

e
+ + + = <

−
 

Now 
( )i z i x y i x y i x y ye e e e e e e+ − − −= = = =          

The requirement for convergence of our given series 1ize <  now becomes 1ye− < . This means   

that 0y > . Hence, the region of convergence is Im 0z >  
 

6.   Theorem 
The convergence of both the real series 1 ( , )jj R x y∞

=∑  and 1 ( , )jj I x y∞
=∑  is a necessary and 

sufficient condition for the convergence of 1 ( )jj u z∞
=∑ , where ( ) ( , ) ( , )j j ju z R x y iI x y= + . If 

1 ( , )jj R x y∞
=∑  and 1 ( , )jj I x y∞

=∑  converge to the functions ( , )R x y  and ( , )I x y , respectively, 

then 1 ( )jj u z∞
=∑  converges to ( ) ( , ) ( , )S z R x y iI x y= + . Conversely, if 1 ( )jj u z∞

=∑  converges to 

( ) ( , ) ( , )S z R x y iI x y= + , then 1 ( , )jj R x y∞
=∑  converges to ( , )R x y and 1 ( , )jj I x y∞

=∑  converges 

to ( , )I x y . 
 

Example 5 
Given infinite series  

21 cos cos2 .....,y ye x e x− −+ + +  
which is obtained by taking the real part of each term in the series of Example 4. Find the sum of this 
new series.  

<Sol.> 
The series of Example 4 converges to 1/(1 )i ze−  in the domain Im 0z > . Thus the series of the 

present example converges to Re[1/(1 )]i ze−  in this domain. We have 
/ 2

/ 2 / 2
1 cos( / 2) sin( / 2) 1Re Re Re Re cos

2 sin( / 2) 2 2 21

i z

i z i z i z
e z i z i z

i ze e e

−

−

⎡ ⎤ ⎡ ⎤− ⎡ ⎤⎡ ⎤ ⎛ ⎞= = = +⎢ ⎥ ⎜ ⎟⎢ ⎥ ⎢ ⎥⎢ ⎥ − ⎝ ⎠− −⎣ ⎦ ⎣ ⎦⎣ ⎦⎢ ⎥⎣ ⎦
 

Now 
sin sinhcot

2 cosh cos
z x i y

y x
−⎛ ⎞ =⎜ ⎟ −⎝ ⎠

 

Thus, the sum of our series is 

( )
sinh 1

2 cosh cos 2
y

y x
+

−
 

 
7.   Theorem: nth Term Test 

1ixe =  and 0ye− >
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The series 1 ( )nn u z∞
=∑  diverges if  

lim ( ) 0n
n

u z
→∞

≠     (3) 

or, equivalently, if 
lim ( ) 0n

n
u z

→∞
≠     (4) 

 
Example 6 

Use the above Theorem to show that the series of Example 3 1

1

j

j

z
∞

−

=
∑ , diverges for 1z > . 

<pf.> 
We take 1( ) n

nu z z −=  and 11( ) nn
nu z z z −−= = . If 1z = , then  

1lim ( ) lim 1 1n
n n nu z −
→∞ →∞= =  

Since this limit is nonzero, the series diverges if 1z = . For 1z > ,  
1lim n

n z −
→∞ = ∞  

which is clearly nonzero. The series again diverges. 
Notice that with 1z <  we have  

1lim 0n
n z −
→∞ =  

However, this is of no use in proving that the series converges for 1z < . 
 

8.   Some Definitions and Theorems 
1) Definition: Absolute and Conditional Convergence 

The series 1 ( )jj u z∞
=∑  is called absolutely convergent if 1 ( )jj u z∞

=∑  is convergent. 

2) Definition: Conditional Convergence 
The series 1 ( )jj u z∞

=∑  is called conditionally convergent if it converges but 1 ( )jj u z∞
=∑  diverges. 

3) Theorem: An absolutely convergent series is independent in ordinary sense. 
4) Theorem: The sum of an absolutely convergent series is independent of the order in which the terms 

are added. 
5) Theorem: Two absolutely convergent series can be multiplied together in the same way as one 

multiplies two polynomials. The resulting series is absolutely convergent. Its sum, which is 
independent of how the terms are arranged, is the product of the sums of the two original 
series. If two absolutely convergent series are 

1 ( ) ( )jj u z S z∞
= =∑  and 1 ( ) ( )jj v z T z∞

= =∑  

⇒    1 1 1 2 2 1 1 3 2 2 3 1( ) ( ) ( ) ( ) ( )u v u v u v u v u v u v S z T z+ + + + + + =    (5) 
Define Cauchy Product: 

1
1

( )
n

n j n j
j

c z u v − +
=

= ∑     (6) 

Then, Eq. (5) can be rewritten as 

1
( ) ( ) ( )n

n
c z S z T z

∞

=
=∑     (7) 

6) Theorem (Ratio Test): 
For the series 1 ( )jj u z∞

=∑ , consider 

1( )
( ) lim

( )
j

j j

u z
z

u z
+

→∞
Γ =     (8) 

then 
(a) the series converges if ( ) 1zΓ < , and the convergence is absolute; 
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(b) the series diverges if ( ) 1zΓ > ; 
(c) Eq. (8) provides no information about the convergence of the series if the indicated limit fails to 

exist or if ( ) 1zΓ = . 
 

Example 7 
Use the ratio test and the nth term test to investigate the convergence of 

1 2 2 4 6

1

( 1) 2 4 16 48 ....j j j

j

j z z z z
∞

+

=

− = − + − +∑  

<Sol.> 
Let 

1 2( 1) 2j j j
ju j z+
= −   and  1 2 2( 1)

1 ( 1) ( 1)2j j j
ju j z+ + +
+ = − +  

Thus, we have 
1 2 2( 1)

1 2
1 2

( 1) ( 1)2 12 .
( 1) 2

j j j
j

j j j
j

u j z j z
u j z j

+ + +
+

+

− + +
= =

−
 

⇒      1 2 21( ) lim lim 2 2j

j j
j

u jz z z
u j
+

→∞ →∞

+
Γ = = =  

Now, use part (a) of the above theorem and set 1Γ < . This requires that 
2 12 1 or .

2
z z< <  

On 1/ 2z =  we have 1Γ = , which provides no information about convergence. However, 

observe that on 1/ 2z = , we have 
2 1

1 1 2( ) 2 2
22

j j
j

j ju z j j j
+

+ ⎛ ⎞= = =⎜ ⎟
⎝ ⎠

 

Clearly, as j →∞ , we do not have 0ju → . Thus, according to the above theorem (mth term test), 

the series diverges on 1/ 2z = . 
 
 
§5-3  Uniform Convergence of Series  
 

1.   Definition: Uniform Convergence 
The series 1 ( )jj u z∞

=∑  whose nth partial sum is ( )nS z  and is said to converge uniformly to ( )S z  

in a region R if, for any 0> , there exists a number N independent of z  so that for all z  in R  
( ) ( )nS z S z− <  for all n N>     (1) 

 
2.   Theorem: Weierstrass M Test 

Let 1 jj M∞
=∑  be a convergent series whose terms 1 2, ,M M  are all positive constant. The series 

1 ( )jj u z∞
=∑  converges uniformly in a region R if  

( )j ju z M<  for all z  in R       (2) 

 
Example 1 

Use the M test to show that 1
1

j
j

z∞ −
=∑  is uniformly convergent in the disc 3/ 4z ≤ . 

<pf.> 
From a previous knowledge of real geometric series, if 1(3/ 4) j

jM −= , then 
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2

1

3 3 11 .... .34 4 1
4

j
j

M
∞

=

⎛ ⎞= + + + =⎜ ⎟
⎝ ⎠ −

∑   (3) 

Now with 1j
ju z −= , we have the given series 

1 2

1 1

1 ....j
j

j j

u z z z
∞ ∞

−

= =

= = + + +∑ ∑    (4) 

If 3/ 4z ≤ , then the magnitude of each term of the series in Eq. (4) is less than or equal to the 

corresponding term in Eq. (3), for example, 2 2(3/ 4)z ≤ , 3 3(3/ 4)z ≤ , etc., so that ( )j ju z M<  

and the M test is satisfied in the given region. 
 

3.   Some Theorems 
1) Let 1 ( )jj u z∞

=∑  converge uniformly in a region R to ( )S z . Let ( )f z  be bounded in R, that is 

( )f z k≤  (k is constant) throughout R. Then in R,  

1 2
1

( ) ( ) ( ) ( ) ( ) ( ) .... ( ) ( )j
j

f u u z f z u z f z u z f z S z
∞

=

= + + =∑  

The series converges uniformly to ( ) ( )f z S z . 

2) Let 1 ( )jj u z∞
=∑  be a series converging uniformly to ( )S z in R. If all the functions 1 2( ), ( ),u z u z  

are continuous in R, then so is the sum ( )S z . 
3) Term-by-Term Integration 

Let 1 ( )jj u z∞
=∑  be a series that is uniformly convergent to ( )S z  in R and let all the terms 

1 2( ), ( ),u z u z  be continuous in R. If C is a contour in R, then 

1 2
1

( ) ( ) ( ) ( ) ...jC
j C C C

S z dz u z dz u z dz u z dz
∞

=

= = + +∑∫ ∫ ∫ ∫  

that is, when a uniformly convergent series of continuous functions is integrated term by term the 
resulting series has a sum that is the integral of the sum of the original series. 

 
Example 

Consider 
21 1 , and 1

1
z z z r r

z
= + + + ≤ <

−
 

Assume that the contour C lies entirely inside the disc z r≤ . The contour is assumed to connect the 
points 0z =  and z z′= . Thus, we have 

2

0 0 0 0

1
1

z z z z
dz dz zdz z dz

z
′ ′ ′ ′

= + + +
−∫ ∫ ∫ ∫    (5) 

In previous chapter, we know that 

0 0

1 1
Ln(1 ) Ln ,

1 1
|zz

dz z
z z

′′

= − − =
′− −

⎛ ⎞
⎜ ⎟
⎝ ⎠∫     (6) 

We have, finally 
2 3

1

1 ( ) ( ) ( )
Ln , , 1

1 2 3

j

j

z z z
z z r r

z j

∞

=

′ ′ ′
′ ′= + + + = ≤ <

′−
∑  

The restriction on z′  can be written simply 1z′ < . 
 

4) Theorem: Analyticity of the Sum of a Series 
If 1 ( )jj u z∞

=∑  converges uniformly to ( )S z  for all z in R and if 1 2( ), ( ),u z u z  are all analytic 
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in R, then ( )S z  is analytic in R. 
5) Theorem: Term-by-Term Differentiation 

If 1 ( )jj u z∞
=∑  converges uniformly to ( )S z  for all z in a region R. If 1 2( ), ( ),u z u z  are all 

analytic in R, then at any interior point of this region 

1

( )
.j

j

d u zd S
d z d z

∞

=

= ∑  

 
Example 

Since 1 2
11/(1 ) 1j

jz z z z∞ −
=− = = + + +∑ , where convergence is uniform for z r≤  (with 1r < ), 

we have upon differentiation 
2 2

2
1 1 (1 ...) 1 2 3 ...,

1 (1 )
d d z z z z
dz z z dz

= = + + + = + + +
− −

 

or      1
2

1

1 , 1, 1.
(1 )

j

j
jz z r

z

∞
−

=

= < <
− ∑  

 
 
§5-4  Taylor's Series  
 

1. An infinite series 

0 1
0

( ) ( ) ( )n n
n n

n
c z c c c z c c z c

∞

=
− = + − + + − +∑  

is a power series in powers of (z−c), where z  is a complex variable and c , Ccn ∈ , ,2,1,0=n . 
 

2. 冪級數之收歛與發散之判定 
Consider the series 

+++++=
∞

=
∑ nn
n

aaaaa 210
0

 

1) Ratio Test  →  Suppose that 0≠na , ,2,1,0=n  

1 1 ,
lim

1 ,
  absolutely convergence.
  divergence.

n
n n

La L
La

+
→∞

<⎧
= = ⎨ >⎩

 

***  If 1=L , the test fails. 
 

2) Root Test 
1 ,

lim | |
1 ,
  absolutely convergence.
  divergence.

n n
n

L
a L

L→∞

<⎧
= = ⎨ >⎩

 

***  If 1=L , the test fails. 
 

3. 試判別下列二式是否為收歛? 

1) 
1 1

n

n

n
n

∞

=

⎛ ⎞
⎜ ⎟+⎝ ⎠

∑ ;  2) 
2

1 1

n

n

n
n

∞

=

⎛ ⎞
⎜ ⎟+⎝ ⎠

∑  

<Sol.>      In calculus, we have two important and useful limits as following： 

1lim 1
n

n
e

n→∞

⎛ ⎞+ =⎜ ⎟
⎝ ⎠

≐2,71828  ----------  (1) 

0

sinlim 1
n

x
x→

=   --------------------------  (2) 

1) Here, we shall use equation (1). 
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lim lim
1

lim
1

1lim
11

1 0

n

n
n n

n

n

nn

na
n

n
n

n

e

→∞ →∞

→∞

→∞

⎛ ⎞= ⎜ ⎟+⎝ ⎠

⎛ ⎞= ⎜ ⎟+⎝ ⎠

=
⎛ ⎞+⎜ ⎟
⎝ ⎠

= ≠

 

Since the n-th term of the series is not equal to zero, thus the series is divergent. That is, 

1 1

n

n

n
n

∞

=

⎛ ⎞
⎜ ⎟+⎝ ⎠

∑  is divergent. 

2)  
2

1

lim | | lim
1

n n
n n

n n

na
n→∞ →∞

⎡ ⎤⎛ ⎞⎢ ⎥= ⎜ ⎟+⎝ ⎠⎢ ⎥⎣ ⎦
 

1lim 1
1

n

n

n
n e→∞

⎛ ⎞= = <⎜ ⎟+⎝ ⎠
 

⇒  
2

1 1

n

n

n
n

∞

=

⎛ ⎞
⎜ ⎟+⎝ ⎠

∑  is convergent. 

 
4. Radius and Circle of Convergence of Power Series 

Every power series 

0
0

( )n
n

n
c z z

∞

=
−∑   -------------   (1) 

has a "radius of convergence" R, and can be defined as 

i)    
1

lim n
n n

cR
c→∞ +

=  

ii)   1lim
nn n

R
C→∞

=  

such that 
a) ∞<< R0 , the series (1) converges absolutely for Rzz <− || 0   

and diverges for Rzz >− || 0  
b) 0=R , the series converges only at 0zz =  

 
 
 
 
 
 
 
 
 
 
 
 

5.   Theorem 

If 00
( )n

nn
c z z

∞

=
−∑  converges when 1z z= , then this series converges for all z  satisfying 

0 1 0z z z z− < − . The convergence is absolute for these values of z .  
 

y 

x
0 

Rzz =− || 0

Absolutely 
Convergence

divergence

在圓上之點不予討論

其是否為發散或收歛 
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6.   Theorem: Uniform Convergence and Analyticity of Power Series 

If 00
( )n

nn
c z z

∞

=
−∑  converges when 1z z= , where 1 0z z≠ , then the series converges uniformly for 

all z  in the disc 0z z r− ≤ , where 1 0r z z< − . The sum of the series is an analytic function for 

0z z r− ≤ . 
<pf.> 

We need to use the Weierstrass M test to prove this theorem. Consider the convergent series 

2
1 0 0 1 1 0 2 1 0

0

( ) ( ) ( ) ...,n
n

n

c z z c c z z c z z
∞

=

− = + − + − +∑     (2) 

For the preceding convergent series of constants, we can find a number m that equal or exceeds the 
magnitude of any of the terms. Thus, 

1 0( ) , 0, 1, 2, .....n
nc z z m n− ≤ =     (3) 

Now consider the original series 
2

0 0 1 0 2 00
( ) ( ) ( ) ...,nn

c z z c c z z c z z
∞

=
− = + − + − +∑     (4) 

where we take 0z z r− ≤  and 1 0r z z< − . Notice that the terms in Eq. (4) can be written 

0
0 1 0

1 0

( ) ( )
n

n n
n n

z zc z z c z z
z z

⎛ ⎞−
− = − ⎜ ⎟−⎝ ⎠

 

Taking magnitudes yields 

0
0 1 0

1 0

( ) ( ) .
n

n n
n n

z zc z z c z z
z z
−

− = −
−

    (5) 

Let 1 0/p r z z= − , where, by hypothesis, 1p < . Since 0z z r− ≤ , we have 

0

1 0

z z p
z z
−

≤
−

    (6) 

Simultaneously applying this inequality, as well as Eq.(3), to the right side of Eq. (5), we obtain 

0( )− ≤n n
nc z z mp     (7) 

Let n
nM mp= . From Eq.(7), we have 

0( ) .− ≤n
n nc z z M     (8) 

The summation 

0 0 0

, 1n n
n

n n n

M mp m p p
∞ ∞ ∞

= = =

= = <∑ ∑ ∑     (9) 

involves a convergent geometric series of real constants. 
Eq. (7), Eq. (9), and the theorem of Weirestrass M test guarantee the uniform convergence 

00
( )n

nn
c z z

∞

=
−∑  for 0z z r− ≤ . Because the individual items 0( )n

nc z z−  in this series are each 

y

x
0 

r
z0 z

z1
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analytic function, it follows that the sum of this series is an analytic function in 0z z r− ≤ .  Q.E.D. 
 

7. In each of the following cases, the radius of convergence is equal to 1. 

1) The series n

n
z

∞

=
∑

0
 does not converge for any point on the circle of convergence. 

2) The series 21 n
z n

n

∞

=
∑  converges at every point on the circle of convergence. 

3) The series  21 n
z n

n

∞

=
∑  converges for 1−=z  and diverges for 1=z . 

 
8. Theorem: Taylor's Series 

If the power series is 

0 0
0

( ) ( ) , | |n
n

n
f z c z z z z R

∞

=
= − − <∑  

and suppose that the function f  is analytic in the interior of a circle C, with center at 0z and radius R. 
Then, we can rewrite the function f  in the form of Taylor's series: 

( )
0

0
0

( )( ) ( )
n

n

n

f zf z z z
n

∞

=
= −∑

！
  -------------  (1) 

where  0| |z z R− < . 
<pf.>      Since   

0
0

( ) ( )n
n

n
f z c z z

∞

=
= −∑  

2
0 1 0 2 0 0( ) ( ) ( )n

nc c z z c z z c z z= + − + − + + − +  
Then, we know that 

2 1
1 2 0 3 0 0( ) 2 ( ) 3 ( ) ( )n

nf z c c z z c z z nc z z −′ = + − + − + + − +  
2 1

2 0 0 0

( )
0

( ) 2 3 2( ) 4 3( ) ( 1)( )

( )

n

n
n

f z c z z z z n n z z

f z n c

−′′ = + ⋅ − + ⋅ − + + − − +

= ！

 

⇒   0 0( )f z c=  

0 1( )f z c′ =  

0 2( ) 2f z c′′ = ！  

( )
0( )n

nf z n c= ！  
Hence, we have 

  0
0

( ) ( )n
n

n
f z c z z

∞

=
= −∑  

( )
20 0

0 0 0 0
( ) ( )( ) ( )( ) ( ) ( )
2

n
nf z f zf z f c z z z z z z

n
′′

′= + − + − + + − +
！ ！

 

n
n

n
cz

n
cf )()()(

0
−=

∞

=
∑

！
 

where (0)
0 0( ) ( ) , and 0 1  f z f z= =！ . 

 
♣   Maclaurin Series 

If 0 0z = , we call the Taylor series a Maclaurin series, i.e., 

0
( ) , | |n

n
n

f z c z z R
∞

=
= <∑ , where 

( ) (0)n

n
fc

n
=

！
 

<pf.> 
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Assume the function ( )f z  is analytic at 0z = . Let sz    
be that singularity of ( )f z  lying closest to 0z = . 
Construct a circle C centered at the origin and passes 
through sz . The radius of the circle is sa z= . Let 

1z lie within this contour. We enclose 1z  by a second 
circle C′ centered at the origin but having a radius less 
than that of C. Since the radius of C′ is b, we have 

1z b a< < . By Cauchy integral formula, 
 
 
 
 

        Now consider 
2

1 1

1

1 1
1

z z
z z z
z

⎛ ⎞= + + +⎜ ⎟
⎝ ⎠−

 

The above series is uniformly convergent when 

1 ,z r
z
≤  where 1r <  

If z  is confined to the contour C′, we observe 1 / 1z z < , and we can readily find a value of r  
satisfying the above equation. 
The function ( ) /f z z  is bounded on C′. Thus, we have 

2
1 1
2 3

1

( ) 1( ) ( ) ( )
1

f z z zf z f z f z
z z z zz
z

= + + +
⎛ ⎞−⎜ ⎟
⎝ ⎠

 

which is uniformly convergent in some region containing C′. Using a term-by-term integration, we 
have 

2
1 1

1 2 3' ' '

1 ( ) ( ) ( )( )
2 2 2C C C

f z z f z z f zf z dz dz dz
i z i z i zπ π π

= + + +∫ ∫ ∫  

From the extended Cauchy integral formula, 
( )

1'

1 ( ) (0) , 0, 1, 2,
2 !

n

nC

f z fdz n
i z nπ + = =∫  

Thus, for 1z b a< <  we have  

2
1 1 0 1 1 2 1

0

( ) ...n
n

n

f z c z c c z c z
∞

=

= = + + +∑     (A) 

where 
( ) (0)n

n
fc

n
=

！
 

Replacing what is now the dummy variable 1z  in Eq. (A) by z , the correctness of Maclaurin Seires  
have been demonstrated. 

 
♣   For Taylor series ( 0 0z ≠ ), the integrand is now written as 

1 1 0
0

0

( ) ( )
( )1
( )

f z f z
z z z zz z

z z

=
− ⎡ ⎤−− −⎢ ⎥−⎣ ⎦

 

and a series expansion is made in powers of 1 0 0( ) /( )z z z z− − . 
 

y 

x
b

z1
C 

zs 

a 

C′ 

1 ' '
11

1 ( ) 1 ( )( ) .
2 ( ) 2 1

C C

f z f z dzf z dz
zi z z i z
z

π π
= =

− ⎛ ⎞−⎜ ⎟
⎝ ⎠

∫ ∫ (A)



 116

H.W. 1  Follow the suggestions given above and give a proof valid for any 0 0z ≠ . 
【本題摘自：A. David Wunsch, Complex Variable with Applications, 3rd ed., Problem 2, Exercise 5.4, 
Pearson Education, Inc., 2005.】 
 

♣   If ( )f z  satisfies the conditions described in the above theorem, then ( )f z  can be represented 
within the domain 0z z b− <  (where b a< ) by the sum of a power series with a finite number of 
terms plus a remainder, i.e., 

1

0

0

( ) ( ) ( )
N

n
n N

n

f z c z z R z
−

=

= − +∑  

Here nc  is again ( )
0( ) /nf z n！, while ( )NR z  is expressed as a contour integration around the circle 

0z z b− = . 

1
' 1

( )
2 ( )

n

n nC

z f zR d z
i z z zπ

=
−∫  

 
H.W. 2  (a) Refer to the proof of the above theorem and to the above figure. Use Eq. (A) (in previous page) to 

show that 
1

1 1 1
1 2'

1

1 1 1( ) ( )
2

nn

nC

z z zf z f z dz
i z z z z z zπ

−⎡ ⎤⎛ ⎞= + + + +⎢ ⎥⎜ ⎟ −⎝ ⎠⎢ ⎥⎣ ⎦
∫  

<Hint> Refer to the following equation 

1 2

1

11 ... ( ) , 1.
1

j

j
z z z S z z

z

∞
−

=

= + + + = = <
−∑  

which implies that 

2 11 1
1 1

n
n zz z z

z z
−= + + + + +

− −
 

and replace z  by 1 /z z  
(b) Use the expression for 1( )f z  given in part (a) to show, after integration, that 

( 1)
2 1

1 1 1 1
(0) (0)( ) (0) (0) ,

2! ( 1)!

n
n

n
f ff z f f z z z R

n

−
−′′

′= + + + + +
−

  (2) 

where 

1
' 1

( )
2 ( )

n

n nC

z f zR dz
i z z zπ

=
−∫    (3) 

We see that nR , the remainder, represents the difference between 1( )f z  and the first n  terms 
of its Maclaurin expansion. 

(c) We can replace an upper bound on the remainder in the above equation. Assume ( )f z m≤  

everywhere on z b=  (the contour C′). Use the ML inequality to show that 

1

1

n

n
z mbR
b b z

≤
−

     (4) 

<Hint> Note that for z lying on the contour C′ 

1 1

1 1
z z b z

≤
− −

 

Why? 
In passing, we notice that since 1 / 1z b < , the remainder nR  in eq. (4) tends to zero as 
n →∞ . Using this limit, we find the right side of Eq. (2) becomes the Maclaurin series of 

1( )f z . This constitutes a derivation of the Maclaurin expansion shown in the last equation (in 
page 114) not requiring the use of uniform convergence. A similar derivation applies for the 
Taylor Series. 
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(d) Suppose we wish to determine the approximate value of cosh i  by the finite series 
0 2 10/ 2! /10!i i i+ + + . Taking the contour C′ in Eq. (3) as 2z = , show by using Eq. (4) that the 

error made cannot exceed 10 3(cosh 2) / 2 3.67 10−× . 
【本題摘自：A. David Wunsch, Complex Variable with Applications, 3rd ed., Problem 32, Exercise 5.4, 
Pearson Education, Inc., 2005.】 
 

9. Some Examples 
 
Example 1  

Let us show that 

2 0

1 1 2( 1) ( 1)
4 2

n
n

n

zn
z

∞

=

−⎛ ⎞= − + ⎜ ⎟
⎝ ⎠

∑  

where 2|2| <−z . 

<pf.>    Let function f be defined by 2

1)(
z

zf = , 0≠∀ z . 

Clearly, f is analytic for all z interior to the circle | 2 | 2c z= − = . 
Differentiating f with respect to z by n times, we obtain 

2
)( )1()1()(

+

+−
= n

n
n

z
nzf ！ , ,2,1,0=n  

Thus, 

2
)(

2
)1()1()2(

+

+−
= n

n
n nf ！ , ,2,1,0=n  

Utilizing Eq. (1), with zc = , we have 

2 20

0

1 ( 1) ( 1) ( 2)
2

1 2( 1) ( 1)
4 2

n
n

nn

n
n

n

n z
z n

zn

∞

+=

∞

=

− +
= −

⋅

−⎛ ⎞= − + ⎜ ⎟
⎝ ⎠

∑

∑

！

！  

where  ,2,1,0=n . 
 

Example 2 
Expand ze  in (a) a Maclaurin series and (b) a Taylor series about z i= . 

<Sol.> 
(a)     2

0 1 2
ze c c z c z= + + +  

In the coefficient formula of Taylor series, with 0 0z = , 

0

0

| 1|
! ! !

n
z

zzn
n z

d e edzc
n n n

=

== = =  

Thus 

0

1
!

z n

n

e z
n

∞

=

= ∑  

(b)      2
0 1( 2() )ze c c z i c z i= + − + − +  

In the coefficient formula of Taylor series, with 0z i= , 

! ! !

n
z

n z i
z in

z i

d e
dz e ec

n n n
=

=

= = =  

thus 



 118

0

( )
!

i
z n

n

ee z i
n

∞

=

= −∑  

Example 3 
Expand  

1( )
1

f z
z

=
−

 

in Taylor series 
0

( 1)n
nn

c z
∞

=
+∑ . For what values of z  must the series converge to ( )f z ? 

<Sol.> 
We can find 0 1/ 2c = , 1 1/ 4c = , and in general, 11/ 2n

nc += . Thus, 

1
0

1 1( ) ( 1)
1 2

n
n

n

f z z
z

∞

+
=

= = +
− ∑  

 
** 茲節錄一些有用級數展開式： 

1)  +++++=
−

nzzz
z

21
1

1  

n

n
z

∞

=
∑=

0
, 1|| <z  

2)  +++++=
!!2

1
2

n
zzze

n
n  

!0 n
z n

n

∞

=
∑= ,  for all z.  

3)  +
+

−+++−=
+

!)12(
)1(

!5!3
sin

1253

n
zzzzz

n
n  

!)12(
)1(

12

0 +
−=

+∞

=
∑

n
z n

n

n
,  for all z.  

4)  +−++−+−=
!)2(

)1(
!6!4!2

1cos
2642

n
zzzzz

n
n  

!)2(

2

0 n
z n

n

∞

=
∑= ,  for all z.  

5)  
!)12(

sinh
12

0 +
=

+∞

=
∑

n
zz

n

n
, ∞<|| z . 

6)  
!)2(

cosh
2

0 n
zz

n

n

∞

=
∑= , ∞<|| z . 

7)  
12

)1(tan
12

0

1

+
−=

+∞

=

− ∑
n

zz
n

n

n
, 1|| <z . 

8)  +
+−−−

++
−

++=+ np z
n

nppppzpppzz
!

)1()2)(1(
!2

)1(1)1( 2 , 1|| <z . 

9)  
1

)1()1ln(
1

0 +
−=+

+∞

=
∑

n
zz

n
n

n
, 1|| <z . 

10) 
1

0

1 2ln
1 2 1

n

n

z z
z n

∞ +

=

+⎛ ⎞ =⎜ ⎟− +⎝ ⎠
∑ , 1|| <z . 

 
10.  Some Theorems 

1)  The Taylor series expansion about 0z  of the analytic function ( )f z  is the only power series using 
powers of 0( )z z−  that will converge to ( )f z  everywhere in a circular domain centered at 0z . 

2)  Let ( )f z  be expanded in a Taylor series about 0z . The largest circle within which this series 
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converges to ( )f z  at each point is 0z z a− = , where a  is distance from 0z  to the nearest 
singular point of ( )f z . 

 
Example 4 

Without actually obtaining the Taylor series give the 
largest circle throughout which the indicated expansion is 
valid: 

2
0

1( ) ( 2)
1

n
n

n

f z c z
z

∞

=

= = −
+ ∑  

<Sol.> 
The singularities of ( )f z  lie at i± . The nearest  
singularity to 2z =  is, in this case, either i+  or 

i− . The distance from 2z =  to these points is 
5 . Thus, the Taylor series converges to ( )f z  

throughout the circular domain 2 5z − < . 
 

Example 5 
Consider the real Taylor series expansion 

2
0

1 ( 2)
1

n
n

n

c x
x

∞

=

= −
+ ∑  

Determine the largest interval along the x -axis inside which the series converges to 21/( 1)x + . 
<Sol.> 

By requiring z  to be a real variable ( z x= ) in the previous example, we require 
2 5 2 5x− < < +  for convergence. 

 
♣ Remarks on Analyticity 

A function ( )f z  is analytic in a domain D if 
(a) ( )f z′  exists throughout D; 
(b) ( )f z has derivatives of all orders throughout D; 
(c) ( )f z  has a Taylor series expansion valid in a neighborhood of each point in D; 
(d) ( )f z  is the sum of a convergent power series in a neighborhood of each point in D. 

 
 
§5-5  Techniques for Obtaining Taylor Series Expansions 
 

1.  Substitution Method 
 
Example 1 

Given 
21 1 , 1.

1
w w w

w
= + + + <

−
 

⇒      
2 3

2 3

1 1 (1 ) (1 ) (1 )

1 ( 1) ( 1) ( 1) , 1 1

z z z
z

z z z z

= + − + − + − +

= − − + − − − + − <
  (1) 

 
H.W. 1  Show that, for 0,N ≥   

0

1
(1 )

n
nN n

c z
w

∞

=
=

− ∑ ,  where ( 1 )!
!( 1)!n

N nc
n N

− +
=

−
, 1z <  

【本題摘自：A. David Wunsch, Complex Variable with Applications, 3rd ed., Problem 7, Exercise 5.5, 
Pearson Education, Inc., 2005.】 
 

y 

x

i 

− i

5  2 5z = −

2 5z = +
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2.  Term-by-Term Differentiation and Integration 
 

Example 2 
Use term-by-term differentiation and the result in Eq. (1) to obtain the expansion of 21/ z  about 

1z = . 
<Sol.> 

Differentiating both sides of Eq. (1) with respect to z  and multiplying by ( 1)− , we obtain 

2
2

n=0

1 1 2( 1) 3( 1) + = ( 1) ( 1)( 1)n nz z n z
z

∞

= − − + − − + −∑    (2) 

valid for 1 1z − < . 
 
H.W. 2  Differentiate the series of Eq. (2) to show that 

2 3
3

1 3 2 4 3 5 41 ( 1) ( 1) ( 1) , | 1 | 1.
2 2 2

z z z z
z

⋅ ⋅ ⋅
= − − + − − − + − <  

【本題摘自：A. David Wunsch, Complex Variable with Applications, 3rd ed., Problem 5, Exercise 5.5, 
Pearson Education, Inc., 2005.】 
 

Example 3 
Obtain the Maclaurin expansion of  

0
Si( ) ( ') ',

z
z f z dz= ∫     (3) 

where 
sin '( ') , ' 0,

'
zf z z

z
= ≠     (4a) 

(0) 1, ' 0.f z= =     (4b) 
The function Si( )z  is called the sine integral and cannot be evaluated in terms of elementary 
functions. It appears often in problems involving electromagnetic radiation. 

<Sol.> 
From the examples in page 118, we have 

3 5( ') ( ')sin ' ' ,
3! 5!
z zz z= − + +  

⇒      
2 4sin ' ( ') ( ')1 .

' 3! 5!
z z z

z
= − + +  

We now integrate as follows: 
2 4 3 5

0 0 0 0

sin ' ( ') ( ')' ' ' ' .
' 3! 5! 3 3! 5 5!

z z z zz z z z zdz dz dz dz z
z

−
= + + + = − + +

⋅ ⋅∫ ∫ ∫ ∫  

Thus, 

2 1

0

Si( ) n
n

n

z c z
∞

+

=

=∑    (5) 

where 
( 1) .

(2 1)!(2 1)

n

nc
n n

−
=

+ +
 

The expansion is valid throughout the z -plane. 
 
H.W. 3  (a) Explain how the following series is derive: 

2 4
2

1 1 , 1
1

= − + − <
+

z z z
z

 

(b) Integrate the series in part (a) along a contour connecting the origin to an arbitrary point z , where 
1z < , to show that   
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2 1
1

0

tan ( 1) , | | 1.
2 1

n
n

n

zz z
n

+∞
−

=

= − <
+∑     (A) 

(c) We might put 1z =  in the preceding expansion to obtain 1tan 1 / 4 1 1/ 3 1/ 5π− = = − + − . This 
expansion, which could be used to obtain / 4π , is valid, although not justified by our method, 
which assumed 1z < .  
This series converges slowly and is not useful for computing π . A more useful series is obtained in 
the following. 
Prove that 1 1tan (1/ 2) tan (1/ 3) / 4π− −+ =  and with aid of (b) derive the more rapidly converging 
series: 

1 1 1 1 1 1
1 1 8 27 32 243 128 2187

4 2 3 3 5 7
π

⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎛ ⎞ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠= + − + − +⎜ ⎟
⎝ ⎠

 

(c) Compare the two series for / 4π  given in (b) by using the first 10 terms in each and seeing how 
well / 4π  is approximated. MATLAB is recommended here. 

【本題摘自：A. David Wunsch, Complex Variable with Applications, 3rd ed., Problems 2 and 8, Exercise 5.5, 
Pearson Education, Inc., 2005.】 
<Ans.> 

(c) MATLAB Command: 
% Two ten term series approximations to pi/4 for problem (c) in H.W. 2 

format long 
s=0; 
for n=0:9 

s=(-1)^n*1/(2*n+1)+s; 
end 
s1=s 
s=0; 
for n=0:9 

s=(-1)^n*(.5^(2*n+1) +(1/3)^(2*n+1)) /(2*n+1)+s; 
end 
s2=s 
exact=pi/4 
 
MATLAB Output 
 
 
 

 
 

3.  Series Expansions of Branches of Multivalued Functions 
 

Example 4 
Find the Maclaurin expansion of 1/ 2( ) ( 1)f z z= + , where the principal branch of the function is used. 
Where is the expansion valid? 

<Sol.> 
Recall that the branch in question is identical to 1/ 2 Ln( 1)ze +  and that its derivative is given by 

1/ 2
(1/ 2) Ln( 1) 1 ( 1) .

2( 1) 2( 1)
z ze

z z
+ +

=
+ +

 

We may of course differentiate indefinitely and thus have 

(1) 1/ 2 1 (2) 1/ 2 2

(3) 1/ 2 3

1 1 1( ) ( 1) , ( ) 1 ( 1) ,
2 2 2
1 1 1( ) 1 2 ( 1) , etc.
2 2 2

f z z f z z

f z z

− −

−

⎛ ⎞= + = − +⎜ ⎟
⎝ ⎠

⎛ ⎞⎛ ⎞= − − +⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 

s1 = 
   0.76045990473235
s2 = 
   0.78539814490159
exact = 
   0.78539816339745
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In general, 

( ) 1/ 21 1 1 1( ) 1 2 ( 1) ( 1)
2 2 2 2

n nf z n z −⎛ ⎞⎛ ⎞ ⎛ ⎞= − − − − +⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠ ⎝ ⎠

    (6) 

Note that 1/ 2( 1) nz −+  must be interpreted as 
1/ 2 (1/ 2) Ln( 1)( 1) .

( 1) ( 1)

z

n n

z e
z z

++
=

+ +
 

When 0z = , this function equals 1/ 2 Ln( 1) /1 1z ne + = . With this result and Eq. (6) and the coefficient 
formula of Taylor series ( ( ) (0) /n

nc f n= ！), we finally have 

(1/ 2)

0

(1 ) n
n

n

z c z
∞

=

+ = ∑      (7a) 

where 

0 1,c =  

1 1 1 1 11 2 ( 1) , 1
! 2 2 2 2nc n n

n
⎡ ⎤⎛ ⎞⎛ ⎞ ⎛ ⎞= − − − − ≥⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠⎝ ⎠ ⎝ ⎠⎣ ⎦

    (7b) 

The singularity of 1/ 2( 1)z +  nearest the origin is the branch point 1z = − . Thus, Eq.(7) is valid in the 
domain 1z < . 

 
H.W. 4  (a) Let α be any complex number except zero or a positive integer. Using the branch of (1 + z)α defined 

by Ln(1+ )α ze (principal branch), show that for 1z < , 
2 3

1

( 1) ( 1)( 3)(1 ) 1 1
2! 3!

α α α α α αα
∞

=

− − −
+ = + + + + = +∑ n

n
n

z zz z c z  

where ( )1 ( 1)( 3) ( 1)
!

α α α α⎛ ⎞= − − − −⎡ ⎤⎜ ⎟ ⎣ ⎦⎝ ⎠
nc n

n
. Follow the method of the above Example 

(Example 3, Section 5.5, in textbook). 

(b) Show that if α is a positive integer, then 
1

(1 ) 1
=

+ = +∑αn n
nn

z c z , where cn is given in Part (a). 

where is this expansion valid? 
【本題摘自：A. David Wunsch, Complex Variable with Applications, 3rd ed., Problem 29, Exercise 5.5, 
Pearson Education, Inc., 2005.】 
 
H.W. 5  (a) Use the result derived in H.W. 3 (a) and a change of variable to show that 

2 3

1/ 2
1 1 3 1 3 51 , 1.

(1 ) 2 2 2 2! 2 2 2 3!
⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞⎛ ⎞= + + + + + <⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟− ⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠⎝ ⎠

z z z z
z

 

Use the first four terms of this series to evaluate approximately 2 . Compare this with the value 
obtained from your calculator. 

(b) Show that 
4 6

2
2 1/ 2

1 1 1 3 1 3 51 , 1.
(1 ) 2 2 2 2! 2 2 2 3!

⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞⎛ ⎞= + + + + + <⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟− ⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠⎝ ⎠
z zz z

z
 

(c) Use the preceding result and a term-by-term integration to show that  
3 5 7

1
2 3
1 3 1 3 5sin , 1.

2 3 1! 2 5 2! 2 7 3!
− ⋅ ⋅ ⋅

= + + + + <
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
z z zz z z  

where this branch of 1sin− z  is analytic inside the unit circle, and 1sin (0) 0− = . Note that 
1cos ( / 2) (the seriers on the above right)− = −z π , provided 1<z . 

(d) Use the series for 1sin− z  to obtain a numerical series for / 6π . Use the first four terms of your 
result to evaluate approximately / 6π .  

【本題摘自：A. David Wunsch, Complex Variable with Applications, 3rd ed., Problem 30, Exercise 5.5, 
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Pearson Education, Inc., 2005.】 
 

4.  Multiplication and Division of Series 
 

Example 5 
(a) Using series multiplication, obtain the Maclaurin expansion of ( ) /(1 )zf z e z= − . 
(b) Use your result to obtain the value of the 1oth derivative of ( )f z  at 0z = . 

<Sol.> 
(a) 

With 
0

/ !z n
n

e z n
∞

=
=∑  (valid for all z ) and 

0
1/(1 ) n

n
z z

∞

=
− =∑  (for 1z < ), we have 

2 3
2

2 3

( ) 1 (1 )
2! 3!

1 1 11 (1 1) 1 1 1 1 ,
2! 2! 3!

z zf z z z z

z z z

⎛ ⎞
= + + + + + + +⎜ ⎟
⎝ ⎠

⎛ ⎞ ⎛ ⎞= + + + + + + + + + +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

or, equivalently 

0

,
1

z
n

n
n

e c z
z

∞

=

=
+ ∑     (8a) 

where 

0

1 .
!

n

n
j

c
j=

= ∑         (8b) 

Eq. (8a) is valid only for 1z < . 
(b) 

It is a little tedious to obtain the 10th derivative of ( )f z  by differentiating this function 10 times. 

Note, however, that in the Maclaurin expansion 
0

( ) n
nn

f z c z
∞

=
=∑ , we have ( ) (0) / !n

nc f n= . 

Thus, using the result of part (a) and taking 10n = , we find 

10

0

1 1 1 1(0) 10! 10! 1 .
! 1! 2! 10!j

f
j

∞

=

⎛ ⎞= = + + + +⎜ ⎟
⎝ ⎠

∑  

 
♣  The Quotient and Product of Two Analytic Functions 

1) Suppose ( )f z  and ( )g z  are both analytic at 0z . If 0( ) 0g z ≠ , the quotient 
( )( )
( )

f zh z
g z

=     (9) 

is analytic at 0z  and can be expanded in Taylor series about this point. 
2) Let the series ( )f z , ( )g z , and ( )h z  are 

00
( ) ( )n

nn
h z c z z

∞

=
= −∑ , 00

( ) ( )n
nn

f z a z z
∞

=
= −∑ , 00

( ) ( )n
nn

g z b z z
∞

=
= −∑  

where na  and nb  are presumed known and the coefficients nc  are unknown. 
3) According to the Cauchy product, we have 

0 0 0

0 0 0

( ) ( ) ( )n n n
n n n

n n n

c z z b z z a z z
∞ ∞ ∞

= = =

− − = −∑ ∑ ∑  

and 
1 2

0 0 0 1 1 0 0 0 2 1 1 2 0 0

2
0 1 0 2 0

( )( ) ( )( )
( ) ( )

c b c b c b z z c b c b c b z z
a a z z a z z

+ + − + + + − +

= + − + − +
 

Equating coefficients of corresponding powers of 0( )z z− , we have 
0 0 0,c b a=      (10a) 
0 1 1 0 1,c b c b a+ =      (10b) 
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0 2 1 1 2 0 2,c b c b c b a+ + =     (10c) 
 

From the first equation, we have 
0

0
0

ac
b

=     (11a) 

and then  

2

1 0 1
1

0 0

a a bc
b b

= −      (11b) 

2
2 1 1 0 2 0 1

2 2 3
0 0 0

a a b a b a bc
b b b

+
= − +    (11c) 

 
The process can be repeated to yield any coefficient nc , where n is as large as we wish. 

 
Example 6 

Obtain the Maclaurin expansion of ( 1) / cosze z−  from the Naclaurin series for 1ze −  and cos z . 
<Sol.> 

From previous paragraph, we have 
2 3

1
2! 3!

z z ze z− = + + +      (12)   and   
2 4

cos 1
2! 4!
z zz = − + −       (13) 

We divide these series as follows: 
2

3

2 4 2 3 4

3

2 4
3

2 4

2

3 4
2

1 1 ...
2! 3! 2!

1 ... ...
2! 4! 2! 3! 4!

2!
1 1 ...

2! 3! 2! 4!

...
2! (2!)

1 1 1 1
3! 2! 4! (2!)

...

zz z

z z z z zz

zz

z zz

z z

z z

⎛ ⎞+ + + +⎜ ⎟
⎝ ⎠

− + − + + + +

− +

⎛ ⎞+ + + +⎜ ⎟
⎝ ⎠

− +

⎛ ⎞⎛ ⎞+ + +⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
+

 

Recalling that cos 0z =  for / 2z π= ± , we have 

0

1
cos

z
n

n

n

e c z
z

∞

=

−
= ∑  

valid for / 2z π< . Our division shows that 

0 0c = , 1 1c = , 2 1/ 2!c = , 3 (1/ 3! 1/ 2!) 2 / 3c = + =  
 
H.W. 6  (a) The Bernoulli numbers B0, B1, B2, … are defined by 

!=n nB n c  
where  

0

, 0
( ) 1

1, 0

∞

=

⎧ ⎫≠⎪ ⎪= =−⎨ ⎬
⎪ ⎪=⎩ ⎭

∑ nz
n

n

z z
f z c ze

z
. 
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Note that ( )f z  is analytic at 0=z  since, for all z,  

      2 3 2
1

1 1
2! 3! 2! 3!

= =
− + + + + + +

z
z z

z z z ze z
 

Perform long division on the right-hand quotient to show that 0 1=B , 1 1/ 2= −B , 2 1/ 6=B . 
(b) Show that the coefficients of odd order beyond 1, i.e., B3, B5, B7, … are all zero. 
<Hint> ( ) / 2 ( / 2)cosh( / 2) / sinh( / 2)+ =f z z z z z  is an even function of z. See Problem 30, 

Section 5.4, Textbook. 
(c) Where is the series expansion of Part (a) valid? 

【本題摘自：A. David Wunsch, Complex Variable with Applications, 3rd ed., Problem 27, Exercise 5.5, 
Pearson Education, Inc., 2005.】 
 

5.   The Method of Partial Fractions 
Consider a rational algebraic function 

( )( )
( )

P zf z
Q z

=  

where P and Q are polynomials in z. If 0( ) 0Q z ≠ , then ( )f z  has a Taylor expansion about 0z . 

Rule I (Nonrepeated factors) 
Let ( ) / ( )P z Q z  be a rational function, where the polynomial ( )P z  is of lower degree than the 
polynomial ( )Q z . If ( )Q z  can be factored into the form 

1 2( ) ( )( ) ( )nQ z C z a z a z a= − − −      (14) 
where 1 2, ,a a  are all different constants and C is a constant, then 

1 2

1 2

( )
( )

n

n

P z A A A
Q z z a z a z a

= + + +
− − −

    (15) 

where 1 2, ,A A  are constants. Eq. (15), called the partial fraction expansion of ( ) / ( )P z Q z , is 
valid for all jz a≠ ( 1, 2, ,j n= ). 

Rule II (Repeated Factors) 
Let ( )Q z  be factored as in Eq. (14), except that 1( )z a−  appears raised to the 1m  power, 2( )z a−  
appears raised to the 2m  power, etc. Then ( ) / ( )P z Q z  can be decomposed as in Eq. (15), except 

that for each factor of ( )Q z  of the form ( ) jm
jz a− , where 2jm ≥ , we replace /( )j jA z a−  in Eq. 

(15) by 
1 2

2
)( ( ) ( )

j

j

jmj j
m

j j j

AA A
z a z a z a

+ + +
− − −

 

 
Example 

Rule I tell us that      
1 2

( 1)( 1) 1 1
z A A

z z z z
= +

− + − +
 

Rule II tell us that     
11 12 2

2 2( 1) ( 1) 1 ( 1) 1
z A A A

z z z z z
= + +

− + − − +
 

♣   Four useful Maclaurin expansion 

(1)   21 1 , | | 1;
1

w w w
w
= + + + <

−
     (16a) 

(2)   2 31 1 , | | 1;
1

w w w w
w
= − + − + <

+
     (16b) 

(3)   2
2

1 1 2 3 , | | 1;
(1 )

w w w
w

= + + + <
−

     (16c) 
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(4)   2
2

1 1 2 3 , | | 1;
(1 )

w w w
w

= − + + <
+

     (16d) 

 
 

Example 7 
Expand  

2
( )

2 ( 1)( 2)
z zf z

z z z z
= =

− − + −
 

in a Taylor series about the point 1z = . 
<Sol.> 

From Rule I, we have 

.
( 1)( 2) 1 2

z a b
z z z z

= +
+ − + −

    (17) 

Clearing the fractions in Eq. (17) yields 
( 2) ( 1)z a z b z= − + +  

We can find a and b by letting z in the above equation equal 1−  and 2. For another approach, we 
rearrange the previous equation as 

( ) ( 2 )z a b z a b= + + − +  
Thus, we have 

1z  coefficient:   1 a b= +  
0z  coefficient:   0 2a b= − +  

whose solution is  
1/ 3, 2 / 3a b= =  

Hence, from Eq. (17) 
1/ 3 2 / 3 .

( 1)( 2) 1 2
z

z z z z
= +

+ − + −
    (18) 

To expand /[( 1)( 2)]z z z+ −  in powers of ( 1)z − , we expand each fraction on the right in Eq. (18) 
in these powers. Thus, 

21/ 3 1/ 3 1/ 6 1 ( 1) ( 1)1 ,( 1)1 ( 1) 2 6 2 41
2

z z
zz z

⎡ ⎤− −
= = = − + −⎢ ⎥−+ − + ⎣ ⎦+

  for 1 2z − <   (19) 

The preceding series is obtained with the substitution ( 1) / 2w z= −  in Eq. (16b). The requirement 
1 2z − <  is identical to the constraint 1w < . 

Similarly, 
22 / 3 2 / 3 2 / 3 2 [1 ( 1) ( 1) ],

2 ( 1) 1 1 ( 1) 3
z z

z z z
−

= = = − + − + − +
− − − − −

 for 1 1z − <   (20) 

where we have used Eq. (16a) and taken 1w z= − . The series in Eqs.(19) and (20) are now 
substituted in the right side of Eq. (18). Thus, 

2
2

1 1
1 2

1 ( 1) ( 1) 21 [1 ( 1) ( 1) ].
( 1)( 2) 6 2 4 3

z
z

z z z z z
z z

− <
− <

⎡ ⎤− −
= − + − − + − + − +⎢ ⎥+ − ⎣ ⎦

 

In the domain 1 1z − < , both series converge and their terms can be combined 

21 2 1 2 1 2( ) ( )( 1) ( )( 1) .
( 1)( 2) 6 3 12 3 24 3

z z z
z z

= − + − − − + − − +
+ −

 

or 

0

( 1) . | 1 | 1
( 1)( 2)

n
n

n

z c z z
z z

∞

=

= − − <
+ − ∑     (21) 

where 
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1 1 2 .
6 2 3

n

nc ⎛ ⎞= − −⎜ ⎟
⎝ ⎠

 

 
Example 8 

Expand 

2( )
( 1) ( 2)

zf z
z z

=
+ −

 

in MAclaurin series. 
<Sol.> 

From Rule II, we have 

2 2 .
( 1) ( 2) 1 ( 1) 2

z A B C
z z z z z

= + +
+ − + + −

    (22) 

Clearing fractions, we obtain 
2( 1)( 2) ( 2) ( 1)z A z z B z C z= + − + − + +     (23) 

or 
2( ) ( 2 ) ( 2 2 ).z A C z A B C z A B C= + + − + + + − − +      (24) 

By putting 2z =  and then 1z = −  in Eq. (23) , we discover that 2 / 9C =  and 1/ 3B = . Note that 
2z  does not appear on the left in Eq. (24), which means 2z  must not appear on the right; hence 

2 / 9A C= − = − . Thus from Eq. (22) 

2 2
2 / 9 1/ 3 2 / 9

( 1) ( 2) 1 ( 1) 2
z

z z z z z
−

= + +
+ − + + −

    (25) 

We now expand each fraction in powers of z . Taking w z= , we have, from Eq. (16b), 

22 / 9 2 [1 ],
1 9

z z
z

−
= − − + −

+
  | | 1,z <  

and, from Eq. (16a) 
2 3

2
1/ 3 1 [1 2 3 4 ], | | 1,

(1 ) 3
z z z z

z
= − + − + <

+
 

With / 2w z=  in Eq. (16a), we obtain 
22 / 9 1/ 9 1 [1 ], | | 2.

2 1 / 2 9 2 4
z z z

z z
−

= = − + + + <
− −

 

The substitution of the three preceding series on the right in Eq. (25) yields 
2 2 3

2
| | 1

| | 1
2

| | 2

2 1[1 ] [1 2 3 4 ]
( 1) ( 2) 9 3

1 1
9 2 4

z
z

z

z z z z z z
z z

z z

<
<

<

= − − + − + − + − +
+ −

⎡ ⎤
− + + +⎢ ⎥

⎣ ⎦

 

Inside 1z = , we can add the three series together and obtain 

2
0

, | | 1.
( 1) ( 2)

n
n

n

z c z z
z z

∞

=

= <
+ − ∑      (26) 

where 

1 2 ( 1) 1 1( 1) ( 1)
9 3 9 2

nn
n

nc n+ − ⎛ ⎞= − + + − ⎜ ⎟
⎝ ⎠

 

 
H.W. 7  Obtain the following Taylor expansions. Give a general formula for the nth coefficients, and state the 

circle within which your expansion is valid.  
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(a) 2
1

( 1) ( 2)
+

− +
z

z z
 expanded about 2=z ; 

(b) 2 2
1

( 1) ( 1)− +z z
 expanded about 2=z ;  

(c) 
( 1)( 1)− +

ze
z z

 expanded about 0=z ; and 

(d) 
3 2

2
2 1

4
z z z

z
+ + −

−
 expanded about 1z = . 

【本題摘自：A. David Wunsch, Complex Variable with Applications, 3rd ed., Problems 19-21 and 23, 
Exercise 5.5, Pearson Education, Inc., 2005.】 
 
 
 
 
§5-6  Laurent Series  
 

♣  Basic Concept: Limitation for Taylor Series 
(1) Negative exponents never appear in Taylor series. 
(2) A Taylor series expansion is only valid in a disc-shaped domain. 

 
Example 1 

Consider a series expansion 

2

1 1 11 ...1 11

z
z z z

z

= = + + +
−−

, for 
1 1,
z
<  or equivalently, 1z >  

⇒      1 2 2 11 1
1

z z z z z
z

− − − −= + + + = + + +
−

, for 1.z >     (1) 

This series is not a Taylor series as the above-mentioned reasons. 
 

Example 2 
Consider the Taylor series 

21 1 , 2.
1 ( / 2) 2 4

z z z
z

= + + + <
−

 

or 
22 1 , 2.

2 2 4
z z z

z
= + + + <

−
 

If we add together Eq. (1) and the preceding, we have the series expansion 
2

2 12 2
1 2 2 4

z z zz z
z z

− −+ == + + + + + +
− −

, 1 2z< <  

This is a special case of series called Laurent series. The ring-shaped domain 1 2z< <  is the 
intersection of the sets of points where the two series used in the calculation are valid. 

 
1.   Definition (Laurent series) 

The Laurent series expansion of a function ( )f z  is an expansion of the form 

2 1
2 0 1 00

0 1 0

( ) ( ) ( ) ( )

( )

n
n

n

f z c z z c z z c z z

c c z z

∞
− −

− −

=−∞

= − = + − + −

+ + − +

∑     (3) 

where the series converges to ( )f z  in a region or domain. 
♣  Examples of Laurent series are often obtained from some simple manipulations on Taylor series. 



 129

 
Example 3 

Given a series 
2

1
2!

u ue u= + + + , all finite u  

Putting 1( 1)u z −= −  in the preceding equation, we have 
2 3

1/( 1) 1 ( 1) ( 1)1 ( 1) ..., 1
2! 3!

z z ze z z
− −

− − − −
= + − + + + ≠  

⇒      
3 2 1

1/( 1) ( 1) ( 1) ( 1) 1, 1
3! 2! 1!

z z z ze z
− − −

− − − −
= + + + + ≠      (4) 

This is a Laurent series with no positive powers of ( 1)z − . 

Multiplying both sides of Eq. (4) by 2( 1)z − , we have 
1

2 1/( 1) 2( 1) 1( 1) ( 1) ( 1) , 1
3! 2!

z zz e z z z
−

− −
− = + + + − + − ≠      (5) 

This is a Laurent series with both negative and positive powers of ( 1)z − . 
 

♣  Applications of Laurent series: 
1) An understanding of the calculus residue 
2) Basis of the z-transformation. 

 
2.  Theorem (Laurent’s Theorem) 

Let ( )f z  be analytic in D, an annular domain 1 0 2r z z r< − < . If z  lies in D, ( )f z  can be 
represented by the Laurent expansion 

2 1
2 0 1 00

2
0 1 0 2 0

( ) ( ) ( ) ( )

( ) ( )

n
n

n

f z c z z c z z c z z

c c z z c z z

∞
− −

− −

=−∞

= − = + − + −

+ + − + − +

∑     (6) 

The coefficients are given by 

1
0

1 ( )
2 ( )

n nC

f zc d z
i z zπ +=

−∫     (7) 

where C is any simple closed contour lying in D 
and enclosing the inner boundary 0 1z z r− = . The 
series is uniformly convergent in any region 
centered at 0z  and lying in D.  

<pf.> 
For simplicity, we consider a proof in which 0z  is   
zero; that is, we seek an expansion in an annulus 
centered at the origin. 
Annulus: 1 20r z r< − < . 
Contour C′ lies in the annulus. Observe that C′   
encloses the point 1z  and that ( )f z  is analytic on and inside the contour. 
Cauchy integral formula: 

1
' 1

1 ( )( )
2 C

f zf z dz
i z zπ

=
−∫      (8) 

The portions of the preceding integral taken along the contiguous lines l1 and l2 cancel because of the 
opposite directions of integration. Thus, Eq.(8) becomes 

1( ) A Bf z I I= +      (9) 
where 

2 1

1 ( )
2

A
z

f zI dz
i z zρπ =

=
−∫     (10) 

y

x
0

r1

z0 C 

r2
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and 

 
 

1 1

1 ( )
2

B
z

f zI dz
i z zρπ =

=
−∫     (11) 

Follow the derivation of the Taylor series in the previous section, we have 

2 2

2
1 1

1

1
0

1 ( ) 1 ( ) 1
2 21

ρ ρπ π= =

∞

=

⎛ ⎞⎛ ⎞= = + + +⎜ ⎟⎜ ⎟⎜ ⎟⎛ ⎞ ⎝ ⎠⎝ ⎠−⎜ ⎟
⎝ ⎠

=

∫ ∫

∑

A
z z

n
n

n

f z f z z zI dz dz
zi i z z zz
z

c z

    (12) 

where 

2
1

1 ( )
2n nz

f zc dz
i zρπ +=

= ∫ , 0, 1, 2,n =     (13) 

In Eq. (12), we require that 1 / 1z z <  or 1 2z ρ<  (since 2z ρ< ). 
In the integral BI , we reverse the direction of integration and compensate with a minus sign in the 
integrand. Thus, 

1 11
1

1

1 ( ) 1 ( )
2 2

1
ρ ρπ π= =

= =
− ⎛ ⎞

−⎜ ⎟
⎝ ⎠

∫ ∫B
z z

f z f zI dz dz
i z z i zz

z

     (14) 

Now 
2

1 1

1

1 1
1

z z
z z z
z

⎛ ⎞= + + +⎜ ⎟
⎝ ⎠−

  if  
1

1z
z

<  or 1z z<  

This series converges uniformly in a region containing the circle 1z ρ=  (since 1 1z zρ= < ). Using 
this series in Eq. (14), and integrating, we obtain 

1

1 2 3

1 1 1

2

1 1 1

1 1 1 2

1 ( ) 1
2

( ) ( ) ( )
2 2 2

B
z

z z z

f z z zI dz
i z z z

z z zf z dz z f z dz z f z dz
i i i

ρ

ρ ρ ρ

π

π π π

− − −

=

= = =

⎛ ⎞⎛ ⎞= + + +⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

= + + +

∫

∫ ∫ ∫
    (15) 

We have the constant 1z  outside the integral signs. We may rewrite Eq. (15) more succinctly as 
1

1 1 1, ,n
B n

n

I c z z ρ
−

=−∞

= >∑     (16) 

where 

y 

x

z1

r1 

Contour C′

r2

z1

ρ1

ρ2 

l1

l2

Detail of Contour C′ 
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1 1

1
1

1 1 ( )( ) , , 2, 1.
2 2

n
n nz z

f zc z f z d z d z n
i i zρ ρπ π

− −
+= =

= = = − −∫ ∫     (17) 

Combining Eqs. (16) and (12) into the right of Eq. (9), we have 

1 2 1 1

1

1 1 1

0

( ) n n
n n

n n

z z

f z c z c z

ρ ρ

+∞ −

= =−∞

< <

= +∑ ∑     (18) 

where 

1
1

1 ( ) , 0, 1, 2, ....
2

n nz

f zc dz n
i zρπ +=

= = ± ±∫      (19) 

We can rewrite Eq. (18) as a single summation, 

1 1( ) n
n

n

f z c z
+∞

=−∞

= ∑     (20) 

that is valid when 1z  satisfies 1 1 2ρ ρ< <z . This restriction can be relaxed to 1 1 2r z r< < . 
Replacing 1z  by z  in Eq. (20), we find that we have derived Eq. (6) for the special case 0 0z = . 

♣  We may conclude that the coefficients for our Laurint series with 0 0z =  are given by 
( ) (0)

!

n

n
fc

n
= ,  for 0n ≥     (21) 

        1) This maneuver is not permitted here!!! 
2) The Cauchy integral formula and its extension apply only when ( )f z  in Eq. (19) is analytic not 

only on C but throughout its interior. 
⇒ We have made no assumption concerning ( )f z . 

 
3.   Definition (Isolated Singular Point) 

The point pz  is an isolated singular point of ( )f z  if ( )f z  is not analytic at pz  but is analytic in 

a deleted neighborhood of pz . 
 

Example 4 
31/[( 1)( 2) ]z z− −  has isolated singular points at 1z =  and 2z =  since we can find a disc, centered  

at each of these points, in which this function is everywhere analytic except for the center. 
 

4. Another Description of Laurent's Series 
As the figure shown, we have 

1 0 1

2 0 2

0

| |
| |

| |

C z z r
C z z r
C z z r

− =

− =
− =

：

：

：

 

where  21 rrr << . 
If the function )(zf is analytic on c1 and c2, and 

)(zf is analytic in the annulus: 

201 || rzzrD <−<：  
Then, for every z in D, we have 

⇒   0
0 1 0

) ( )
( )

n n
n nn n

bf z a z z
z z

∞ ∞

= =
= − +

−
∑ ∑（   -------------  (A) 

where 

1
0

1 ( )
2 ( )

n nC
f za dz

i z zπ +=
−

∮  

1
0

1 ( )
2 ( )

n nC
f zb dz

i z zπ − +=
−

∮  

y

x 
0

r

C1

r2 

r1

C

z0

C2 
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and the 
1 0( )

n
nn

b
z z

∞

= −
∑  is called the principle part of the Laurent Series. 

** 因為 z0為圓心，而 z 則為 C 之圓周，二者不可能相等，因此 0zz − 不可能為 0。 
所以，當 1=n 時 

⇒   1
1 ( )

2 C
b f z dz

iπ
= ∮  

⇒  1( ) 2
C

f z dz i bπ=∮  

where b1 is called the residue of )(zf at 0zz = , thus 

0

1Res ( )
z z

f z b
=

=  

 
** If )(zf is analytic on a simple closed curve C and at every points interior of C except at 0zz = , 

⇒  
0

( ) 2 Res ( )
C z z

f z dz i f zπ
=

=∮  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Example 5 
Expand  

1( )
3

f z
z

=
−

 

in a Laurent series in powers of ( 1)z − . State the domain in which the series converges to ( )f z . 
<Sol.> 

The only singularity of ( )f z  is at 3z = . A Taylor series representation of ( )f z  is valid in the 
domain 1 2z − < . But, with 0 1z = , we can represent ( )f z  in 

a Laurent series in the domain 1 2z − > . Recall that 

21 1 , 1.
1

w w w
w
= + + + <

−
     (22) 

Now 
1 1 1/( 1)

3 ( 1) 2 1 2 /( 1)
z

z z z
−

= =
− − − − −

     (23) 

Comparing Eq. (22) and (23) and taking 2 /( 1)w z= − , we obtain 
our Laurent series. Thus, 

2

1 2 3

1 1 2 41
3 1 1 ( 1)

( 1) 2( 1) 4( 1)

z z z z

z z z− − −

⎡ ⎤
= + + +⎢ ⎥− − − −⎣ ⎦
= − + − + − +

 

y

x
0 

← 只能有一點為 
非解析 

z0

C

除 z0外，其餘皆

可解析 

r

y 

x
1 3

Singularity

Taylor series 
applies 

Laurent series applies 
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The condition 1w <  in Eq. (22) becomes 2 /( 1) 1z − <  or 1 2z − > . 
 

Example 6 
Expand 

1( )
( 1)( 2)

f z
z z

=
+ +

 

in a Laurent series in powers of ( 1)z −  valid 
in an annular domain containing the point 

7 / 2z = . State the domain in which the series 
converges to ( )f z . Consider also other series 
representation of ( )f z  involving powers of 
( 1)z −  and state where they are valid. 

<Sol.> 
Refer to the shown figure. 
Since ( )f z  has singularities at 2−  and 1− , 
we see that one such domain is 1D  defined by 2 1 3z< − < , while another is 2D  given by 

1 3z − > . A Taylor series representation is also available in the domain 3D  described by 1 2z − < . 
Since 7 / 2z =  lies in 1D , it is the Laurent expansion valid in this domain that we seek. 
We break ( )f z  into partial fractions. Thus, 

1 1 1
( 1)( 2) ( 1) ( 2)z z z z

= −
+ + + +

    (24) 

Rewrite the first fraction as 
1 1 1/ 2

( 1) ( 1) 2 1 ( 1) / 2z z z
= =

+ − + + −
     (25) 

or, alternatively, as 
1 1 1/( 1)

( 1) ( 1) 2 1 2 /( 1)
z

z z z
−

= =
+ − + + −

      (26) 

Recall that 
2 31 1 , 1.

1
w w w w

w
= − + − + <

+
 

With ( 1) / 2w z= − , we expand eq. (25) to obain 
21 1 ( 1) ( 1)1

1 2 2 4
z z

z
⎡ ⎤− −

= − + +⎢ ⎥+ ⎣ ⎦
,   if 

1 1
2

z −
<  or 1 2z − <      (27) 

Taking 2 /( 1)w z= − , we expand Eq. (26) as follows: 

2

1 2 3

1 1 2 41
1 ( 1) ( 1) ( 1)

( 1) 2( 1) 4( 1) ...

z z z z

z z z− − −

⎡ ⎤
= − + +⎢ ⎥+ − − −⎣ ⎦
= − − − + − −

  if 
2 1

1z
<

−
 or 1 2z − >    (28) 

We have expressed 1/( 1)z +  as a Taylor series and a Laurent series, both in powers of ( 1)z − . 
Similarly, for the fraction in Eq.(24), with ( 1) / 3w z= − , we have 

2

1 1 1/ 3
12 ( 1) 3 1

3

1 ( 1) ( 1)1 , 1 3
3 3 9

zz z

z z z

− −
− = =

−+ − + ⎛ ⎞+ ⎜ ⎟
⎝ ⎠

⎡ ⎤− −
= − − + − − <⎢ ⎥

⎣ ⎦

     (29) 

and, with 3/( 1)w z= −  

y

x
1

D1 

3 −1−2 4 
D3 

D2 

r1 = 2 

r2 = 3

7
2
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2

1 2 3

1 1 1/( 1)
2 ( 1) 3 1 3/( 1)

1 3 91
1 ( 1) ( 1)

( 1) 3( 1) 9( 1) , 1 3

z
z z z

z z z

z z z z− − −

− − −
− = =

+ − + + −

⎡ ⎤
= − − + −⎢ ⎥− − −⎣ ⎦
= − − + − − − + − >

     (30) 

In the domain 1D , the series in Eqs.(28) and (29) converge to their respective functions (but, the series 
in Eqs. (27) and (30) are of no use). Using these equations, we replace each fraction on the right in Eq. 
(24) by a series and obtain 

1 2 3

1 2

2

1 3

1 ( 1) 2( 1) 4( 1)
( 1)( 2)

1 1 1( 1) ( 1) ,
3 9 27

z

z

z z z
z z

z z

− − −

− >

− <

= − − − + − −
+ +

− + − − − +
     (31) 

which, when written in more succinctly, reads 
1 ( 1) ,

( 1)( 2)
n

n

n

c z
z z

+∞

=−∞

= −
+ + ∑  2 1 3z< − <     (32) 

where 
11( ) , 0

3
n

nc n+= − ≥      (33a) 

and 
1 1( 1) 2 , 1n n

nc n+ − −= − ≤ −      (33b) 
♣   A Laurent series expansion of ( )f z  in the domain 1 3z − > , that is, 2D , is possible. We represent 

the partial fractions in Eq. (24) by the series shown in (28) and (30). Both are valid in 2D . Adding 
these series, we have 

21 ( 1) , 1 3,
( 1)( 2)

n
n

n

c z z
z z

−

=−∞

= − − >
+ + ∑  

where 
1 1( 1) 3 2 , , 3, 2.n n n

nc n− − − −⎡ ⎤= − − = − −⎣ ⎦  

 
Example 7 

Expand 
1( )

( 1)
f z

z z
=

−
 

in a Laurent series that is valid in a deleted neighborhood of 1z = . State the domain throughout which 
the series is valid. 

<Sol.> 
Observe that ( )f z  has singularities at 1z =  and 0z = . The annulus 0 1 1z< − <  is the largest 
deleted neighborhood of 1z =  that excludes both singularities of ( )f z . 
Decomposing ( )f z  into fractions, we obtain 

1 1 1
( 1) 1z z z z

= − +
− −

     (34) 

This equality breaks down at 0z =  and 1z = . The second fraction, 1( 1)z −− , is already expanded in 
powers of ( 1)z − . It is a one term Laurent series.  
For the fraction 1/ z− , we have the choice of two series containing powers of ( 1)z − . Thus 
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( )21 1 1 ( 1) ( 1) , 1 1
1 ( 1)

z z z
z z

−
− = = − − − + − − − <

+ −
    (35) 

and 

1
2

1 2 3

1 1/( 1) 1 1( 1) 1
1 1/( 1) ( 1) ( 1)

( 1) ( 1) ( 1) 1 1

z z
z z z z

z z z z

−

− − −

⎛ ⎞− −
− = = − − − + −⎜ ⎟+ − − −⎝ ⎠

= − − + − − − + − >

     (36) 

Using Eq. (35) on the right in Eq. (34) to represent 1/ z− , we get 

2 1

11 1

1 1 ( 1) ( 1) ( 1)
( 1)

zz

z z z
z z

−

≠− <

= − + − − − + + −
−

 

or, more neatly, 

1

1

1 ( 1) ( 1) , 0 | 1 | 1.
( 1)

n n

n

z z
z z

∞
+

=−

= − − < − <
− ∑  

♣   Had we used Eq. (36) instead of Eq. (35) to represent 1/ z−  on the right in Eq. (34), we would have 
obtained the Laurent expansion 

2 3 41 ( 1) ( 1) ( 1)
( 1)

z z z
z z

− − −= − − − + − −
−

 

This expansion is valid in the same annulus as the series in Eq. (36), that is, 1 1z − > , which is not the 
required deleted neighborhood of 1z = . 

♣   Laurent series for transcendental functions are sometimes obtained either by division of Taylor series 
or by a recursive procedure equivalent to series division. 

 
Example 8 

Expand 1/ sin z  in a Laurent series valid in a deleted neighborhood of the origin. Where in the 
complex plane will your series converge to this function? 

<Sol.>  
Recall that 

sin 0z =  when 0, , 2 ,z π π= ± ±  
Thus, 0, ,z π π= −  are isolated singular points of 1/ sin z . A Laurent expansion of this function, 
employing powers of z , is thus possible in the punctured disc 0 z π< < . 

We seek a series expansion of the form 1/ sin n
nn

z c z
∞

=−∞
=∑ . Note that 

2 1 2
3 2 1 0 1... ...

sin
n

n
n

z z c z c z c z c c z c z
z

∞
− −

− − −
=−∞

= = + + + + + +∑      (37a) 

Now from L’Hôspital’s rule, we 

0 0

1lim lim 1
sin cosz z

z
z z→ →
= =  

If the series on the right in Eq. (37a) is to produce this same limit, we require that 

2 3 4= = 0c c c− − −= =  

Otherwise, the terms 1 2 3
2 3 4, , ,c z c z c z− − −
− − −  etc., on the right would become infinite as 0z → . 

Having eliminated all nc  for 2n ≤ − , we have 

1 2
1 0 1 2

1 ..., (0 )
sin

c z c c z c z z
z

π−
−= + + + + < <  

Multiplying both sides of the preceding equation by sin z  and using the expansion  
3 5

sin
3! 5!
z zz z= − + − + , 

we have 
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3 5
1 2

1 0 1 21 ( ...)( ...)
3! 5!
z zz c z c c z c z−

−= − + + + + + +  

Now multiplying the series on the above right and equating the coefficients of the various powers of 
z  to the corresponding coefficients on the left, we find 

0z  term:    11 ,c−=  
1z  term:    00 ,c=  

2z  term:    1
10 ,

3!
cc −= −  

3z  term:    0
20 ,

3!
cc= −  

4z  term:    1 1
30 ,

3! 5!
c cc −= − +  

, etc. 
Then, we find the coefficients of all even powers,  

0 2 4 0c c c= = = =  
and 

1 1 31, 1/ 6, 1/ 5! (1/ 3!) / 3! 7 / 360,c c c− = = = − + =  
and when n is odd, the general form of nc  is shown as below 

2 4 6 1

3! 5! 7! ( 2)!
n n n

n
c c c cc

n
− − − −⎡ ⎤

= − + + ±⎢ ⎥+⎣ ⎦
 

Thus, we have 
31 1 7 , 0

sin 6 360
z z z

z z
π= + + + < <      (37b) 

In the following figures, we have plotted an approximation to 1/ sin z  obtained by our using the first 

five terms in the Laurent expansion of 1/ sin z ; i.e., we have graphed 2 31
0 1 2 3

c c c z c z c z
z
− + + + +  for 

the domain 0 z π< < . For comparison, we have plotted in the shown figure the function 1/ sin z . 
 

%   section 5.6, approximate plot of ⏐1/sin z⏐ 
x=[-3.5:0.05:3.5]; 
y=[-3.5:0.05:3.5] ; 
[X,Y]=meshgrid(x,y); 
Z=X+i*Y; 
w=1./Z+(1/6).*Z+(7/360).*Z.^3; 
wm=abs(w); 

        meshz(X,Y,wm);view(100,70) 
 
%  section 5.6, exact plot of ⏐1/sin z⏐ 

x=[-3:0.05:3]; 
y=[-4:0.05:4] ; 
[X,Y]=meshgrid(x,y); 
Z=X+i*Y; 
w=sin(Z); 
wm=1./abs(w); 
meshz(X,Y,wm);view(150,70) 
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♣   From the location of the singularities of 1/ sin z , we 
see that it should be possible to obtain another Laurent 
series, in powers of z , valid in 2D  of the following 
figure, i.e., 

1
sin

n
n

n

d z
z

∞

=−∞

= ∑ ,  2zπ π< <  

Similarly, there is a third Laurent series valid in the 
domain 3D  described by 2 3zπ π< < . 

 
 
 
H.W. 1  The exponential integral 1( )E a  is defined by the 
improper integral 

1( ) , 0
x

a

eE a dx a
x

−∞
= >∫  

Thus, 

1 1( ) ( ) ,
xb

a

eE a E b dx
x

−

− = ∫  

Use a Laurent expansion for /ze z−  and a term-by-term integration to show that 
2 2 3 3

1 1( ) ( ) Ln ( )
(2!)(2) (3!)(3)

b b a b aE a E b b a
a

− −
− = − − + − +  

【本題摘自：A. David Wunsch, Complex Variable with Applications, 3rd ed., Problem 18, Exercise 5.6, 

y 

x
D1 

π 2π 

D3 

D2 

3π
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Pearson Education, Inc., 2005.】 
 
H.W.2   (a) Extend the work of the previous Example 8 to show that in the expansion 

1

1
sin

n
n

n

c z
z

∞

=−

= ∑ ,  0 z π< <  

we can get nc  from the recursion formula 

2 4 6 1

3! 5! 7! ( 2)!
n n n

n
c c c cc

n
− − − −⎡ ⎤

= − + + ±⎢ ⎥+⎣ ⎦
 

when n  is odd. Recall that 0nc =  if n  is even and that 1 1c− = . 
(b) Find 5c  for the series. 

(c) Consider the Laurent expansion 
1

1/ sinh n
nn

z a z
∞

=−
=∑  for 0 z π< < . Find, by means of a 

change of variable, the simple relationship between coefficients na  and nc  of part (a). 
(d) Derive a recursion formula like that given in part (a) for the na  coefficients. Proceed as we did in 

Example 8. 
(e) Using MATLAB, obtain figures like those in Figures (shown in the previous page) so that one can 

compare 1/ sinh z  with a five-term Laurent expansion approximating this function. Use the 

domain 0 z π< <  as in the previous figures and a five-term Laurent series. 
【本題摘自：A. David Wunsch, Complex Variable with Applications, 3rd ed., Problem 23, Exercise 5.6, 
Pearson Education, Inc., 2005.】 
<Ans.> 

♣   MATLAB commands for plotting 1/ sin z  
%  section 5.6, plot of ⏐1/sinh z⏐ 

clear 
nm=5; 
d(1)=1; 
for k=2:nm 
for j=1:k-1 
   u(j)=gamma(2*k-2*j+2); 
end 
d(k)=sum(d./u); 
d; 
end 
nr=25; 
r=linspace(0.05,pi-0.05,nr); 
nth=91; 
theta=linspace(0.2*pi,nth); 
[T,R]=meshgrid(theta,r); 
[X,Y]=pol2cart(T,R) ; 
z=X+i*Y ; 
mm=length(d) ; 
ff=0 ; 
for p=1:mm 
   ff=d(p)*z.^(2*p-3)+ff; 
end 
% ff=1./sinh(z); 
%use for figure (a) 
meshz(X,Y,abs(ff)); view(135,30) 

 
%  section 5.6, exact plot of ⏐1/sin z⏐ 

x=[-3:0.05:3]; 
y=[-4:0.05:4] ; 
[X,Y]=meshgrid(x,y); 
Z=X+i*Y; 
w=sin(Z); 
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wm=1./abs(w); 
meshz(X,Y,wm);view(150,70) 

 
H.W. 3  One way of defining the Bessel functions of the first kind is by means of an integral: 

1( ) cos( sin )
2nJ w n w d

π

π
θ θ θ

π

+

−
= −∫  

where n  is an integer. The number n  is called the order of the Bessel function. There is a 
connection between this integral and the coefficients of z  in a Laurent expansion of ( 1/ ) / 2w z ze − . 
Let 

( 1/ ) / 2 , 0w z z n
n

n

e c z z
∞

−

=−∞

= >∑     (38) 

Show using Laurent’s theorem that 
( )n nc J w=     (39) 

<Hint>  Refer to eq. (7). Take as a contour 1z = . Make a change of variables to polar coordinate ( iz e θ= ). 
Then, use Euler’s identity and symmetry to argue that a portion of your result is zero. 
The expression 

1( / 2)( )w z ze
−−  is called a generating function for these Bessel functions. 

【本題摘自：A. David Wunsch, Complex Variable with Applications, 3rd ed., Problem 26, Exercise 5.6, 
Pearson Education, Inc., 2005.】 
 
H.W. 4   (a) Refer to Eqs.(38) and (39). Show that 

2

0

( 1) ( / 2)( ) , 0, 1, 2,
!( )!

k n k

n
k

wJ w n
k n k

∞ +

=

−
= =

+∑  

<Hint>  The left side of Eq. (38) is ( / 2) /(2 )wz w ze e− . Multiply the Maclaurin series for the foirst term by a 
Laurent series for the second term. 

(b) Let w  be a real variable in the preceding. Consider the Bessel function 0( )J w , which we will try 
to approximate using three different Nth partial sums in the series derived above. Using MATLAB, 
plot on one set of axes these sums for the cases 11, 12,N =  and 15  for the interval 0 10w≤ ≤ .  
(You may wish to re-index the sum.) Notice that rather significant differences. Bessel functions are 
built into MATLAB and there is no usually a need to use series approximations. Plot on the same 
axes 0( )J w  for 0 10w≤ ≤  using the MATLAb supplied function, and compare it with the three 
partial-sum approximation. 

【本題摘自：A. David Wunsch, Complex Variable with Applications, 3rd ed., Problem 27, Exercise 5.6, 
Pearson Education, Inc., 2005.】 
<Ans.> 

♣  MATLAB commands: 
       %  for H.W. 4 (b) 

clear 
x=linspace(0,10,100); 
nm=[11 12 15] 
for jj=1:3 
   y=x.*0; 
for k=1:nm(jj) 
   k=k-1; 
   y=(-1)^(k)*(x/2).^(2*k)/(gamma(k+1))^2+y; 
end 
plot(x,y); hold on 
end 
y2=besselj(0,x); 
plot(x,y2);grid 
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§5-7  The z Transformations  
 

1.   Definition of z Transform 
The z transform of the function ( )f t , that is, [ ]( )f tZ , is given by 

[ ] 1 2

0

( ) ( ) (0) ( ) (2 )n

n

f t f nT z f f T z f T z
∞

− − −

=

= = + + +∑Z     (1) 

where 0T > . The function so obtained is called ( )F z . We say that [ ]( ) ( )f t F z=Z . 
1) Eq. (1) is a Laurent series with no positive exponent in any term 
2) ( )f t is defined only for , 0, 1, 2,t nT n= = . 
3) The transformation is the conversion of a sequence of numbers ( )nc f nT=  ( 0, 1, 2,n = ) to a 

function of z  by means of 
0

n
nn

c z
∞ −
=∑ . 

4) In some treatment of z-transform, it is convenient to take 1T = . In this case, we have 
( ) ( )f n F z↔ . 

5) Let us set 1/w z=  in Eq.(1), we have 

[ ]
0

( ) ( ) n
n

n

F z f t c w
∞

=

= = ∑Z , for w r≤ , where r ρ< and 0ρ >  

Thus, 
0

(1/ ) ( )n
nn

c z F z∞

=
=∑  is an analytic function of z  for 1/ z r≤  or 1/z r≥ . This means 

that the z-transform ( )F z , defined by a Laurent series, that is analytic in the z -plane in an annular 
domain whose outer radius is infinite. 

6) Inversion of z-transform: 
[ ]1 ( ) ( )f z f nT− =Z  

 
2.  z Transform Inversion Formula 

11( ) ( ) , 0, 1, 2,
2

n

C
f nT F z z dz n

iπ
−= =∫     (2) 

Here, C is any circle centered at the origin with radius greater than R. 
 

♣  Unit step function 
( ) 1, 0u t t= ≥     (3a) 
( ) 0, 0u t t= <     (3b) 

 

N = 11

N = 15

N = 12

J0(w)

J0(w) and N = 15 
cases can not be 
distinguished 
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Example 1 
Find [ ]( )u tZ , the transform of the unit step function. 

<Sol.> 
It is obvious that 

( ) 1u nT =  for 0, 1, 2,n =  
Thus, from Eq. (1), we have 

[ ] [ ] 20

1 1( ) 1 1n
n

u t z
z z

∞ −
=

= = = + + +∑Z Z  

Recalling that 
21 1

1
w w

w
= + + +

−
, for 1w <  

With 1/w z= , we have 

2

1 1 11
1 1/ 1

z
z z z z

+ + + = =
− −

 

which is valid for 1/ 1z <  or 1z > . Thus, 

[ ] [ ]( ) 1 , 1
1

zu t z
z

= = >
−

Z Z  

 
Example 2 

Find the z transform of ( ) ( )f t tu t= . 
<Sol.> 

Here, ( )f nT nT=  for 0, 1, 2,n = . Thus,  

[ ] 2 3
0

1 2 3( ) ( ) ...n

n

tu t nT z T
z z z

∞
−

=

⎡ ⎤= = + + +⎢ ⎥⎣ ⎦
∑Z      (4) 

Recall that 

( )
2 3

2 2 3 ...., 1.
1
ω ω ω ω ω
ω

= + + + <
−

 

If we replace w  with 1/ z  in the preceding and multiply both sides by T , we have 

( )
( )2 2 3

1/ 1 2 3 ... , 1.
1 1/
T z

T z
z z zz

⎡ ⎤= + + + >⎢ ⎥⎣ ⎦−
 

Comparing this equation with Eq. (4), we obtain 

[ ] ( )
2 2

1/
( )

(1 1/ ) ( 1)
T z Tztu t

z z
= =

− −
Z  

 
3.   Linearity of the z transformation 

If  
( ) ( )f t F z↔  
( ) ( )g t G z↔  

then we have 
1) [ ]( ) ( )cf t cF z=Z , where c is constant. 

2) ( ) ( ) ( ) ( ) ( ) ( )f t g t f t g t F z G z+ = + = +⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦Z Z Z  

3) ( ) [ ] [ ] ( ) ( )1 1 1( ) ( ) ( )F z G z F z G z f t g t− − −+ = + = +⎡ ⎤⎣ ⎦Z Z Z  

Example 3 

( ) ( )
( ) ( )

2

2 21
1 1 1

z Tz z z Tzt u t
z z z

− +
+ = + =⎡ ⎤⎣ ⎦ − − −

Z  

 
Example 4 



 142

If 2( ) ( 1) /F z z z= + , find [ ]1 ( )F z−Z . 
<Sol.> 

Rewriting ( )F z  as a two-term Laurent series, we have 
2( ) (1/ ) (1/ )F z z z= +  

A glance at Eq. (1) shows that 
(0) 0f = , ( ) (2 ) 1f T f T= = , and ( ) 0, 3f nT n= ≥  

 
Example 5 

If ( ) ( 1) /( 1)F z z z= + − , find [ ]1 ( )F z−Z . 
<Sol.> 

( )F z  can be expanded in a Laurent series valid for 1z > . We have 

( ) ( )1 21 21
1 1 1

zzF z
z z z

− ++
= = = +

− − −
 

Now, 
22 2 1 2 1 11 , 1

1 1 (1/ )
z

z z z z z z
⎡ ⎤⎛ ⎞= = + + + >⎢ ⎥⎜ ⎟− − ⎝ ⎠⎢ ⎥⎣ ⎦

 

Thus, 

2

2 2( ) 1 , 1F z z
z z

= + + + >  

Studying the coefficients and using Eq. (1), we conclude that  
(0) 1f = , and ( ) 2, 1f nT n= ≥  

 
♣   A given ( )F z  does not necessarily have an inverse z transform.  

1) If ( )F z  has no Laurent series of the form 
0

n
nn

c z
∞ −
=∑ , no inverse transform is possible. 

2) 0lim ( )
z

F z c
→∞

=   ⇒  It means that ( )F z  may have inverse transform. 

 
4.   Translation properties of z transform 

1) First translation formula: 

If [ ]
0

( ) ( ) ( ) n

n

f t F z f nT z
∞

−

=

= = ∑Z , then  

( ) ( ) ( )( )n n

n k n k

f t kT f nT kT z f n k T z
∞ ∞

− −

= =

− = − = −⎡ ⎤⎣ ⎦ ∑ ∑Z  

where recalling that ( ) 0, 0f t t= < , we see that ( ) 0,f nT kT− =  when n k<  and 0k ≥ . 
We now re-index this summation using m n k= − . Thus, 

( ) ( ) ( ) ( )
0 0

m k k m

m m

f t kT f mT z z f mT z
∞ ∞

− + − −

= =

− = =⎡ ⎤⎣ ⎦ ∑ ∑Z  

⇒      ( ) ( )kf t kT z F z−− =⎡ ⎤⎣ ⎦Z     (6) 

2) Second translation formula 
Consider ( )f t kT+⎡ ⎤⎣ ⎦Z  when 1k = . We have 

( ) ( ) ( )( )

( ) ( ) ( )
0 0

1 2

1

2 3 ....

n n

n n

f t T f nT T z f n T z

f T f T z f T z

∞ ∞
− −

= =

− −

+ = + = +⎡ ⎤⎣ ⎦

= + + +

∑ ∑Z
 

Adding and subtracting (0)f z  in this last series, we obtain 
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( ) ( ) ( ) ( ) ( )0 1

( )

0 2 0 .
zF z

f t T f z f T z f T z f z−⎡ ⎤+ = + + + −⎡ ⎤⎣ ⎦ ⎣ ⎦Z  

Thus, 

( ) ( ) (0)f t T zF z zf+ = −⎡ ⎤⎣ ⎦Z     (7) 

When 2k = , we have 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( )
2

1 2

0

2 1 2

( )

2

2 2 2 3 4

0 2 3 4 ...

0 .

n

n

z F z

f t T f nT T z f T f T z f T z

f z f T z f T f T z f T z

z f zf T

∞
− − −

=

− −

+ = + = + + +⎡ ⎤⎣ ⎦

⎡ ⎤= + + + + +⎣ ⎦

− −

∑Z

 

Thus, 

( ) ( ) ( ) ( )2 22 0 .f t T z F z z f z f T+ = − −⎡ ⎤⎣ ⎦Z     (8) 

General case for 0k ≥ : 

( ) ( ) ( ) ( ) ( )
( )

1 20 2

( 1) .

k k k kf t kT z F z z f z f T z f T

zf k T

− −+ = − − −⎡ ⎤⎣ ⎦
− − −

Z
 

 
Example 6 

If ( ) ( )atf t e u t= , then ( ) /( )aTF z z z e= −  for 
aTz e> . Use this result to find ( )g t⎡ ⎤⎣ ⎦Z , 

where ( )( ) ( )a t Tg t e u t T−= − . Also, find 

( )h t⎡ ⎤⎣ ⎦Z , where ( )( ) ( )a t Th t e u t T+= + . 

Assume that 0a > . 
<Sol.> 

Since ( ) ( )g t f t T= − , we use Eq. (6) with 1k =  to get ( )G z . Thus, 

1 1( ) aT aT
zG z z

z e z e
−= =

− −
,  for aTz e>  

Since ( ) ( )h t f t T= + , we use Eq. (7) to get ( )H z . Noting that (0) 1f = , we have 

( )
2 aT

aT aT

z zeh t z
z e z e

= − =⎡ ⎤⎣ ⎦ − −
Z  

 
5.   z Transforms of Products of Functions 

Let [ ]
0

( ) ( )n
n

n

f t c z F z
∞

−

=

= =∑Z  and [ ]
0

( ) ( )n
n

n

g t d z G z
∞

−

=

= =∑Z , where ( )nc f nT=  and 

( )nd g nT= . By definition [ ]
0

( ) ( ) ( ) ( ) n

n

f t g t f nT g nT z
∞

−

=

= ∑Z . Thus, 

( ) ( )
0

n
n n

n

f t g t c d z
∞

−

=

=⎡ ⎤⎣ ⎦ ∑Z     (9) 

Let ( )F z  and ( )G z  both be analytic in the domain z R> . From Laurent expansion we have  

0

( ) ,m
m

m

F w c w w R
∞

−

=

= >∑  

and 

0 0

( / ) ( / ) , /n n n
n n

m m

G z w d z w d w z z w R
∞ ∞

− −

= =

= = >∑ ∑ , or z R w>  

− T T 0

h(t) f(t) g(t) 

t 



 144

Multiplying our series, we have 

( ) ( )
0 0

/ ,n m n
m n

m n

F w G z w c d w z
∞ ∞

− −

= =

= ∑∑     (10) 

where we choose w R>  and z R w> . 
Refer to the figure shown on the left. 
We take Rρ > , and we place our variable w  on this   
circle so that w ρ= . In Eq. (10), we will require that 

z Rρ> . Hence, the Laurent expansion in Eq. (10) is 
uniformly convergent in a domain in the w-plane 
containing the circle w ρ= . The following Laurent 
expansion is also uniformly convergent in this domain: 

( ) ( )
0 0

1 1/
2 2

n n m

m n
m n

z wF w G z w c d
iw i wπ π

− −∞ ∞

= =

= ∑∑
        We can thus integrate this series term by term around w ρ= , so that 

( ) ( )
0 0

/1 1 .
2 2

n m
n

m nw w
m n

f w G z w wdw c d z dw
i w i wρ ρπ π

−∞ ∞
−

= =
= =

= ∑∑∫ ∫     (11) 

Recalling that 
0, 1

2 , 1
k

w

k
w dw

i kρ π=

≠ −⎧
= ⎨ = −⎩∫  

We notice that the integrands on the right in Eq. (11) are zero except when n m= . Then,  

/ 2n n m n

w
z w wdw iz

ρ
π− − −

=
=∫ , for n m=  

Thus, Eq. (11) becomes 
( ) ( )

0

/1 .
2

n
n n

n

F G z
d c d z

i ω ρ

ω ω
ω

π ω

∞
−

=
=

= ∑∫     (12) 

Comparing the above with Eq. (9), we have our desired result: 

( ) ( ) ( ) ( )/1 .
2

F G z
f t g t d

i ω ρ

ω ω
ω

π ω=
=⎡ ⎤⎣ ⎦ ∫Z      (13) 

In this integral, we require that z Rρ> , where Rρ > . Recall that R  is such that ( )F w  and 

( )G w  are analytic for w R> . 
 

Example 7 
Find ( )atte u t⎡ ⎤⎣ ⎦Z  from Eq. (13). 

<Sol.> 
Let ( ) ( )f t tu t=  and ( ) ( )atg t e u t= . Thus, we have  

[ ] 2( ) ( )
( 1)

Tzf t F z
z

= =
−

Z  

and 

[ ]( ) ( )
( )aT

zg t G z
z e

= =
−

Z  

Notice that ( )F z  is analytic except at 1z = , while ( )G z  is analytic except at aTz e= . Substituting 
in Eq. (13), we find 

y 

x

ρ 

R 
w
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2

2

1 /( )
2 ( 1) ( / )

1 1
2 ( 1) ( )

at
aTw

aTw

Tw z wte u t dw
i w w z w e

zT dw
i w z we

ρ

ρ

π

π

=

=

⎡ ⎤ =⎣ ⎦ − −

=
− −

∫

∫

Z
     (14) 

We require Rρ > , where R is the radius of a circle in the w-plane outside which ( )F w  and ( )G w  

are analytic. Thus, 1R >  and aTR e> .  

Recall that Eq. (13) is valid for z Rρ> . We have, for w  lying on or inside the contour w ρ= , 

.aT aT aTe e e R zω ω ρ ρ= ≤ < <  

The preceding, aTwe z< , tell us that 0aTz we− =  can not be satisfied on and inside our contour of 
integration. 
Using the extended Cauchy integral formula, Eq. (14) can be evaluated as 

( )
( )2

1

1 aT
aT

aT aT

d zTete u t zT
d z e z eωω ω =

⎡ ⎤⎡ ⎤ = =⎣ ⎦ ⎢ ⎥−⎣ ⎦ −
Z      (15) 

 
6.   Inverse z Transform of a Product of Two Functions 

Definition of Convolution 

( ) ( ) ( ) ( )( )
0

* , 0, 1, 2,
k

f t g t f kT g n k T n
∞

=

= − =∑     (16) 

 
♣   Commutative property: 

( ) ( ) ( ) ( )( ) ( ) ( )
0

* *
k

g t f t g kT f n k T f t g t
∞

=

= − =∑ ,  

when ( )f t  and ( )g t  are zero for 0t <  
 
♣   The sum in eq. (16) need to be carried only from 0k =  to k n= . 

Let ( ) ( ) ( ) ( )( )0
( ) *

k
h t f t g t f kT g n k T∞

=
= = −∑ , which defines ( )h t  for t nT= . Now 

( ) ( ) ( )( )
0 0

n

n k

h t f kT g n k T z
∞ ∞

−

= =

⎡ ⎤= −⎡ ⎤⎣ ⎦ ⎢ ⎥⎣ ⎦
∑ ∑Z  

The inner sum needs to be carried out only as far as n . Taking ( ) kf kT a=  and ( ) jg jT b= , we 
have 

( )
0 0

.
n

n
k n k

n k

h t a b z
∞

−
−

− −

=⎡ ⎤⎣ ⎦ ∑∑Z      (17) 

Now [ ]
0

( ) ( )k
k

k

f t a z F z
∞

−

=

= =∑Z  and [ ]
0

( ) ( )j
j

j

g t b z G z
∞

−

=

= =∑Z . Thus, 

( ) ( )

( ) ( )
( ) ( )

0 0

2 2
0 1 2 0 1 2

1 2
0 0 0 1 1 0 0 2 1 1 2 0

/ / / /

k j
k

k j

F z G z a z bjz

a a z a z b b z b z

a b a b a b z a b a b a b z

∞ ∞
− −

= =

− −

=

= + + + + + +

= + + + + + +

∑ ∑

 

Hence, we see that 

0

( ) ( ) n
n

n

F z G z c z
∞

−

=

= ∑  

where 
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0

n

n k n k
k

c a b −
=

= ∑  

Comparing this series with Eq. (17), we have, finally, 

( ) ( ) ( ) ( ) ( )* .h t f t g t F z G z= =⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦Z Z     (18) 

Thus,  
the z transform of the convolution of two functions is the product of the z transform of each 
function,  
and, conversely 
the inverse z transform of the product of two functions is the convolution of the inverse transform of 
each function. 

 
Example 8 

Using the concept of convolution, find 

( )( )
( )

2
1 .

1aT

z h nT
z e z

−
⎡ ⎤

=⎢ ⎥
− −⎢ ⎥⎣ ⎦

Z  

<Sol.> 
Rewriting the expression in the brackets and using the inverse of Eq. (18), we have 

( ) ( ) ( )1 * ,
1aT

z z f t g t
z e z

− ⎡ ⎤
=⎢ ⎥− −⎣ ⎦

Z  

where 

( ) ( )1 1and .
1aT

z zf nT g nT
z e z

− −⎡ ⎤ ⎡ ⎤= =⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦
Z Z  

Recalling that 

1 ( ) ( )
( 1)

z f t u t
z

− ⎡ ⎤
=⎢ ⎥−⎣ ⎦

Z  

and 

1 ( )
( )

at
aT

z e u t
z e

− ⎡ ⎤
=⎢ ⎥−⎣ ⎦

Z  

where t nT=  in both cases.  
Taking ( ) ( )anTf nT e u nT=  and ( ) ( )g nT u nT=  and performing their convolution, we get 

( ) ( )( )
0

.akT

k

h nT e u n k T
∞

=

= −∑  

Now ( )( ) 0u n k T− =  for k n>  and ( )( ) 1u n k T− =  for n k≥ . We can thus rewrite the 

preceding as 

( ) ( )
0 0

.
n n kakT aT

k k

h nT e e
= =

= =∑ ∑  

Recalling that 1
0

(1 ) /(1 )n k k
k

p p p+
=

= − −∑ , and taking aTp e= , we have 

( )
( )

( ) ( )

1 2
11

1 1

a n T

aT aT

e zh nT
e z e z

+
−
⎡ ⎤−

= = ⎢ ⎥
− − −⎢ ⎥⎣ ⎦

Z  

 
7.    Difference Equation and the z Transform 

Let ( )f nT  be a function defined for 0, 1, 2,n = , and assume 0T > . 
Find the closed-form of the solution of the equation 

( )( ) ( )1 2 0.f n T f nT+ − =  

given that (0) 1f = . 
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1)  Method I: 
Put 0n = , (0) 1f =  and obtain ( ) 2f T = . 
Then putting 1n = , ( ) 2f T = , we get (2 ) 4f T = . 
Continuing in this way, we find 

( ) 2nf nT = , 0, 1, 2,n =  
2)  Method II: z-transform 

We perform a z transform on both sides of the given equation taking t nT= , [ ]0 0=Z , 

[ ]2 ( ) 2 ( )f nT F z=Z . With (0) 1f = , from the translation formula, we have 

( )( 1) ( )f n T zF z z+ = −⎡ ⎤⎣ ⎦Z  

Thus, the transformed equation,  

( ) ( ) [ ]( 1) 2 0f n T f nT+ − =⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦Z Z Z  

becomes 
( ) 2 ( ) 0zF z z F z− − =  

Hence, we obtain 

( )
2

zF z
z

=
−

 

To obtain ( )f nT , we have 

( ) ( )2 3
0

1 2 4 81 ... .
1 2 /

n

n

F z f nT z
z z z z

∞
−

=

= = + + + + =
− ∑  

Thus, 
( ) 2nf nT = . 

 
♣   General form of the linear difference equation: 

( ) ( )( ) ( )( ) ( ) ( )0 1 21 2 .Na f t NT a f t N T a f t N T a f t g t+ + + − + + − + + =     (19) 
Here, t nT= , 0, 1, 2,n = , and ( )g t  must be defined for these values of t. N is an integer N≥ . 

 
Example 9 

The Fibonacci sequence of numbers was first described in the early thirteenth century by the Italian 
mathematician Leonardo Fabonacci (1170-1250). The sequence is 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, …. 
Each element of the sequence is the sum of the two preceding elements. Fabonacci described these 
numbers in the solution of a problem in the growth of a rabbit population. The numbers arise also in 
plant growth, puzzles, and in aesthetics. For 0n ≥ , the nth element of the sequence, ( )f n , satisfies 
the difference equation ( 2) ( 1) ( )f n f n f n+ = + + , or 

( 2) ( 1) ( ) 0f n f n f n+ − + − =     (20) 
The preceding is of the form shown in Eq. (19) if we take 0 1 21, 2, 1, 1, 1T N a a a= = = = − = − . 
Note that (0) 0f = , (1) 1f = , (2) 1f = , etc. Our problem is to find a closed-form solution of Eq. (20) 
by using z transform. 

<Sol.> 
Taking the z transform of Eq. (20), we have 

[ ] [ ] [ ]( 2) ( 1) ( ) 0f n f n f n+ − + − =Z Z Z  
With 1,T = (0) 0f = , (1) 1f = , we obtain 

[ ]( 1) ( )f n zF z+ =Z  
and 

[ ] 2( 2) ( )f n z F z z+ = −Z  
Substituting these into our transformed equation, we have 

2 ( ) ( ) ( ) 0z F z z zF z F z− − − =  
from which we obtain  

2( )
1

zF z
z z

=
− −
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We expand the preceding in a Laurent series containing z  to only nonpositive powers. Partial 
fraction are handy here. Thus, 

2

1 (1 5) / 2 (1 5) / 2( )
1 5 (1 5) / 2 (1 5) / 2

zF z
z z z z

⎡ ⎤+ −
= = −⎢ ⎥− − − + − −⎣ ⎦

 

Each fraction can be expanded in negative powers of z , and we obtain 

0

( ) , (1 5) / 2n
n

n

F z c z z
∞

−

=

= > +∑  

where 
1 (1 5) (1 5)
52

n n
n n

c ⎡ ⎤= + − −⎣ ⎦  

Since ( )nc f n= , the problem is solved. 
For example, the 20th Fabonacci number ( 20n = ) is 6765. 

 
8.   MATLAB and z Transform 

1) Symbolic Mathematics Toolbox in MATLAB 
2) MATLAB functions: ztrans and iztrans 

 
H.W. 1   Show that ( )Ln /( 1)z z −  is analytic in a cut plane defined by the branch cut 0, 0 1y x= ≤ ≤ . 

Expand this function in a Laurent series valid for 1z > , and use your result to show that 

( )( ) Ln /( 1)T u t T z z
t

⎡ ⎤− = −⎢ ⎥⎣ ⎦
Z  

We define ( ) / 0u t T t− = when 0t = . 
【本題摘自：A. David Wunsch, Complex Variable with Applications, 3rd ed., Problem 12, Exercise 5.8, 
Pearson Education, Inc., 2005.】 
 
H.W. 2  Show that 

[ ] 2

sin( )sin( ) , 1
2 cos( ) 1
z Tt z

z z T
αα
α

= >
− +

Z , α  is real. 

【本題摘自：A. David Wunsch, Complex Variable with Applications, 3rd ed., Problem 3, Exercise 5.8, 
Pearson Education, Inc., 2005.】 
 
H.W. 3   (a) If [ ]( ) ( )f t F z=Z , show that 

( ) ( )t Te f t F zeβ β−⎡ ⎤ =⎣ ⎦Z  
(b) Use the preceding result and the result of H.W. 2 to show that 

2

sin( )sin( ) , , and , real
2 cos( )

T
t T

T T

ze Te t z e
z ze T e

β
β β

β β

αα α β
α

⎡ ⎤ = >⎣ ⎦ − +
Z  

【本題摘自：A. David Wunsch, Complex Variable with Applications, 3rd ed., Problem 16, Exercise 5.8, 
Pearson Education, Inc., 2005.】 
 
H.W. 4   If [ ]( ) ( )f t F z=Z , where ( )F z  is analytic for z R> , show that 

11( ) ( )
2

n

C
f nT F z z dz

iπ
−= ∫  

where C is the circle 0 0,z R R R= > . C can also be any closed contour into which 0z R=  can be 
deformed, by the principle of deformation of contours. 

【本題摘自：A. David Wunsch, Complex Variable with Applications, 3rd ed., Problem 17, Exercise 5.8, 
Pearson Education, Inc., 2005.】 
 
H.W. 5  The gamma function, written ( )zΓ , is an important analytic function of a complex variable and is 

treated at some length in next chapter. Here, as a prelude, we see its connection to the z  transform. 
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(a) The gamma function is defined as 1

0
( ) lim

L z u
Lz u e du− −
→∞Γ = ∫ , commonly written 1

0

z uu e du
∞ − −∫ . 

Here u  is a real variable, z  a complex variable, and 1 ( 1) Lnz z uu e− − −= . In the next chapter, we 
learn that ( )zΓ  is analytic for Re 0z > . Do an integration by parts to show that 

( 1) ( )z z zΓ + = Γ  
(b) Show that (1) 1Γ = , (2) 1Γ = , (3) 2Γ = . Taking 0n ≥  as an integer, show by induction that  

( 1) !n nΓ + =  
(c) Show that  

[ ] 1/1/ ( / 1) , 0.zt T e zΓ + = >Z  
【本題摘自：A. David Wunsch, Complex Variable with Applications, 3rd ed., Problem 19, Exercise 5.8, 
Pearson Education, Inc., 2005.】 
 
H.W. 6  (a) Use the result derived in part (c) of H.W. 5, the transform shown in the previous lecture note, and 

Eq.(13) to show that 
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(b) Derive this same formula by using the results of part (a) in H.W. 3 and part (c) in H.W. 5. 
【本題摘自：A. David Wunsch, Complex Variable with Applications, 3rd ed., Problem 20, Exercise 5.8, 
Pearson Education, Inc., 2005.】 
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