CHAPTER FIVE

Power Series

§5-1 Introduction and Review of Real Series

1. Examples of power series
o N x2 x3
D =Y —=l+x+—+—+- (1
) Z;‘) n! 21 3! M
1 x+1)" X+ 1 x+1)?
n=0 2 4 8
2. Power series expansion of real function — Taylor series

f(x)= ZCn(x—xO)n =¢ +cl(x—x0)+c2(x—x0)2+---+cn(x—x0)"+--- 3)

n=0

where

_ ")

n!

“)

Cn

3. Applications of power series
1) Numerical approximation for integral

Example

02 e" replaced by its Taylor series 0.2

jo (€ —1)/ xdx N jo (1+x/2)dx
2) Evaluation of the sum of infinite power series
Example

For Eq. (2), substituting x=-1/2 gives
2 1.1 1 1

328 32 128
&  Some difficulties
1) Not all functions of x have a Taylor series expansion.

Example

= Z c,x" = Since x"? does not possess a first- or higher-order derivative at x =0

2) Limitation in convergence of the sum of infinite series

Example
With x =2 on both sides in Eq. (2), we obtain
-1= %+ % +2+ -+ = Clearly, the infinite sum will not yield the numerical value —1.

§5-2 Complex Sequence and Convergence of Complex Series

1. Definition (convergence and limit of a complex sequence)
The infinite sequence p;(z), p,(2), p3(z), --,, p,(z), -+ converges and is said to have a limit

P(z), for a value of z lying in some region R, if given a constant e >0 we can find a number N
such that

|P(z)- p,(2)|<e forall n>N (1
We then write

lim p,(z)=P(z) (2)

n—0
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Example 1

For the sequence 1+¢ 7,1+ 2%, 1+e77, ..., 1+e ", ..., show that the limit is 1 if
x=Re(z)>0
<p£>

With P(z)=1, p,(z)=1+e "™ andwith 0<e<1,weemploy Eq.(1) and obtain the requirement

‘1—e‘"2—1 <e, for n>N.

—nz
- ‘e

This is equivalent to

_ 1
e™<e or ¥ <—,for n>N.

€
1 ( 1 j
= n>—In| —
x \e
If we take N as the integer that equals or exceeds the positive quantity lln (lj , then the condition
x \e€

‘e_"z <e will be satisfied forall n> N .

Note the necessity for our having chosen x as positive as it guarantees that
—Nx > e*(N‘Fl)x > ef(N+2)x

e

ieif ‘e_”z

< e 1issatisfied for n= N, then it is satisfied forall n> N .

Since we take

N2> 1 In [l)
x \e
it is clear that N depends on both x = Re(z) and €, and grows as e shrinks.

= lim (1+efnz):1
n—®

2. Limits of complex sequences
If p,(z2)=v,(2)+iw,(z) and P(z)=V(z)+iW(z)(v,, W

no

V', W are real functions), then
1) lim p,(z)=P ifandonlyif limv,(z)=V and lim w,(z)=W
n—»o n—»0 n—o©

2) If lim,_,, p,(z)=Pand lim, ,,¢q,(z)=0,then
@) lim [p,(2)+,(2)] = P+Q
n—>0

b) nlgr;o [pn (Z)qn (Z)] = PQ
¢c) lim [pn(z)/qn(z)]=P/Q,if 0#0

3. Some useful limits
1) lim /" =0,if |r<1.

n—>0

2) lim n*r" =0,if |r|<1, kreal.
n—o

3) lim (1+x/n)" =e*, xreal.
n—>0
Example 2
Using the result lim [1 +(1 /n)}n = e, find the limit of the sequence (1 + e_Z)(l +1/1),

n—»0
(l+e_22)(1+1/2)2, (1+e‘32)(1+1/3)3,..., (l+e_nz)(l+l/n)",...f0r Re(2)>0.
<Sol.>
Taking p,(z)=1+e ™, P=1, q,=(1+1/n)", Q=e, wehave
lim [pn(z)qn(z)] =PQ=e
n—0
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4,

Series and partial sum

1) Series: ul(z)+u2(2)+“':§:”j(z)
=1

2) Partial sum: S,(z) = i u;(z)

J=1

Example: S1(2) =uy(2)

5.

S$3(2) =uy(2) +uy(2)
S3(Z) = MI(Z) +M2(Z)+M3(Z)

Definition for Ordinary Convergence
For a convergent series that, given € >0, there exists an integer N(e,z) such that

|S,(z)-S(z)|<e, forall n>N .

lim S,(2)=8(z) = S(z)= iu (2)
n—»0 j=1

# The set of all values of z for which the series converges is called its region of convergence (ROC).

Example 3
Show that
sz_1:1+z+22+...:S(z): R |Z|<1. (A)
j=1 l_Z
<p£>
The n-th partial sum is
S =l+z+z" +.+2""
= Sn(Z)—ZSn(Z)=(1+Z+Zz+...+Zn71)—(Z+Zz+...+Z’1):1—Zn
so that
(1-2)S,(z)=1-z"
Or, for z#1
1-z" 2 n-1
S (z)= =l4+z+z +..+2Z". (2
-z
Since the sum in Eq. (A) is S(z)=1/(1-z), we have
1-(1-2_ |
IS(z)—Sn(z)|=| (-2 (b)
| -z | |1—z|

Referring the above definition, we require for convergence that
n

|z

|1_Z|<€,for n>N  (¢)
or that

L1

z €|1—Z|.

Taking logarithms of the preceding, we obtain

1

> Ln .
e|1—z|

z

nln

Inside the disc |z| <1, we have |1/ z| >1 and Ln|1 / z| > 0 . The above inequality can be rearranged as
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1
L I
“Lp_ZJ _ Ln(eLnfi-2])
1 - Ln|z|

z

n>

(d)
Ln

If we choose N as appositive integer that equals or exceeds the right side of Eq. (d) and take n> N,
then Eq. (c) is satisfied. Hence,

|S,, (z)- S(z)| <e,forall n>N  ---emmeemmv Q.E.D. (Quod erat demonstradum!)
Example 4
Given infinite series ZZO:O e =1+e"+e* 4. , find its region of convergence.
<Sol.>
We know that
iz i2z 1 iz
I+e"+e+.... = —, |ef|<1

¢*l=1 and ¢ >0

l-e
Now 7 |
‘elz — ‘el(x-#y)‘ — ‘ezxe—y‘ — ‘ezx e—y‘ — e—y

The requirement for convergence of our given series ‘e’z‘ <1 now becomes e ” <1. This means

that y > 0. Hence, the region of convergence is Imz >0

6. Theorem

The convergence of both the real series Z;o:l R;(x,y) and Zle I;(x,y) isanecessary and
sufficient condition for the convergence of Zi] uj(z), where u;(z)=R;(x,y)+il ;j(x,y).If
Zj:l R j(x, y) and z;il I; (x,y) converge to the functions R(x,y) and I(x,y), respectively,
then Zj}:l uj(z) convergesto S(z)=R(x,y)+il(x,y).Conversely, if z;il u;(z) converges to

S(z)=R(x,y)+il(x,y), then 2311 Rj(x,y) converges to R(x,y) and Zj_j:l I; (x,y) converges
to I(x,y).

Example 5
Given infinite series

l+e” cosx+e > cos2x +.....,

which is obtained by taking the real part of each term in the series of Example 4. Find the sum of this
new series.
<Sol.>

The series of Example 4 converges to 1/(1— e’ ) in the domain Imz > 0. Thus the series of the

present example converges to Re[l/(1— e'? )] in this domain. We have
—iz/2 i i
Re| ! I N i . cos(z/2). isin(z/2) _Re icos(i}rl
l—elz e_lZ/z —eZZ/z —ZiSIH(Z/Z) 2 2 2

z) sinx—isinhy
cot| = |[=———
2) coshy—cosx

Thus, the sum of our series is
sinh y

Now

_ simhy 1
2(coshy—cosx) 2

7. Theorem: nth Term Test
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The series Z:=1 u,(z) diverges if
lim u,(z) %0 3)

n—0

or, equivalently, if
lim |u,(2)| %0 (4)
n—>0

Example 6
Use the above Theorem to show that the series of Example 3 ZZj ! diverges for |2[>1.
=
<pf>
We take u,(z)=z"" and |un (z)| =

= |z|”_1 JIf |z| =1, then
1

. . -1
lim,, ., [u, (2)| =lim,,_,, 1"

Since this limit is nonzero, the series diverges if |z| =1. For |z| >1,

. n—1

lim,_,, |z| =0
which is clearly nonzero. The series again diverges.
Notice that with |z| <1 we have

lim,, o0 |2/" ™ =0

However, this is of no use in proving that the series converges for |z| <1.

8. Some Definitions and Theorems
1) Definition: Absolute and Conditional Convergence

The series Z;;”j (z) 1is called absolutely convergent if Z?=1|u 5 (z)| is convergent.
2) Definition: Conditional Convergence
The series Z;O:l uj(z) is called conditionally convergent if it converges but Zf=1|u J (z)| diverges.

3) Theorem: An absolutely convergent series is independent in ordinary sense.
4) Theorem: The sum of an absolutely convergent series is independent of the order in which the terms

are added.

5) Theorem: Two absolutely convergent series can be multiplied together in the same way as one
multiplies two polynomials. The resulting series is absolutely convergent. Its sum, which is
independent of how the terms are arranged, is the product of the sums of the two original
series. If two absolutely convergent series are

Zj?:l uj(z)=S(z) and Zj;l v(2)=T(2)
= (v + (uyvy +upvy) + (g vy +upvy +uzvy) +---=S(2)I'(z)  (5)
Define Cauchy Product:
n
(D)= Uy (6)
Jj=1
Then, Eq. (5) can be rewritten as

2. n(2)=S()T(2) (7

n=l1

6) Theorem (Ratio Test):

. o0 .
For the series ZFI u;(z), consider

U (2)
“j(Z)

®)

[(z) = lim

J >

then
(a) the series converges if I'(z) <1, and the convergence is absolute;
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(b) the series diverges if I'(z)>1;

(c) Eq. (8) provides no information about the convergence of the series if the indicated limit fails to
existorif I'(z)=1.

Example 7
Use the ratio test and the nth term test to investigate the convergence of

D (1) 2 =427 +162" —482° + ...
Jj=1
<Sol.>
Let

uj:(_l).ijzjﬂzzj and uj+l:(_1)j+l(j+1)2j+222(j+1)

Thus, we have

| [0 Gan2 2| e
= — =|—2z.
‘ u, ‘ ‘ (=1 j2/"' 2%/ | Jj
= F(z):l_im%uj+l‘:l_im|j4:12zz =2|7|
Jo® uj Jo® J

Now, use part (a) of the above theorem and set I' <1. This requires that
1
2

On |Z| =1/ \/5 we have I'=1, which provides no information about convergence. However,

2‘22‘<1 or |z|<

observe that on |Z| =1/ \/5 , we have

197+ 1Y’ 2 2j
\uj(Z)\—J (ﬁ] =J =2

Clearly, as j — o0, we do not have |u /-| — 0. Thus, according to the above theorem (mth term test),

the series diverges on |Z| =1/ \/5 .

§5-3 Uniform Convergence of Series
1. Definition: Uniform Convergence

The series 27:1 uj(z) whose nth partial sumis S,(z) and is said to converge uniformly to S(z)

in aregion R if, for any € >0, there exists a number N independent of z sothatforall z inR
|S(2)-S,(2)|<e forall n>N (D

2. Theorem: Weierstrass M Test
Let ZC;‘J:I M be aconvergent series whose terms  Mj, M,, --- are all positive constant. The series
zc;;l uj(z) converges uniformly in a region R if
|u j(z)| <M; forall z inR Q)
Example 1
Use the M test to show that Zj;l z/™ s uniformly convergent in the disc |z| <3/4.

<p£>

From a previous knowledge of real geometric series, if M ; =(3/ 4)j -1 , then
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= 3 (3 ]
M =1+24| 2| 4. =——. (3

= 123
4
Now with u; = 277", we have the given series
® ®
Zuj: N =14z422 4.0 @)

j=1 J=l
If |z| <3/4, then the magnitude of each term of the series in Eq. (4) is less than or equal to the

2

corresponding term in Eq. (3), for example, [z°|< (3/4)2 , 12| (3/4)3 , etc., so that |uj(z)| <M,

and the M test is satisfied in the given region.

3.  Some Theorems

1) Let z?:l uj(z) converge uniformly in aregion Rto S(z).Let f(z) bebounded in R, that is
| f (z)| <k (kis constant) throughout R. Then in R,

if(u)uj(Z) = f(@u,(2) + f(2)uy(2) +.... = f(2)S(2)
The series converges uniformly to  f(z)S(z) .

2) Let ch:l u j(z) be a series converging uniformly to S(z) in R. If all the functions u;(z), uy(z), -

are continuous in R, then so is the sum S(z).
3) Term-by-Term Integration

Let ZC;:] u;(z) be aseries that is uniformly convergent to S(z) in R and let all the terms

u1(2), uy(z), -+ be continuous in R. If C is a contour in R, then

ICS(z)dz = ijuj(z)dz = _[ul (z)dz+ju2(z)dz o

that is, when a uniformly convergent series of continuous functions is integrated term by term the
resulting series has a sum that is the integral of the sum of the original series.

Example
Consider

" =l4+z+z"+--, |z|£r and r<l1
-z

Assume that the contour C lies entirely inside the disc |z| < r. The contour is assumed to connect the
points z=0 and z==z'".Thus, we have
2z 1 2z 2z z 5
j dz=.[ dz+J. ZdZ-I-'[ z'dz+-+ (5)
0]—z 0 0 0
In previous chapter, we know that

j: dz =—Ln(l —z)|;, - Ln(l _lzj (6)

-z

We have, finally
1 Z, 2 Z, 3 © Z’ Jj
Ln =Z'+( ) +( ) +~-=Z( ), |z'|£r, r<l

1 - Z’ 2 3 Jj=1 ,]

The restriction on z' can be written simply |2/|<1.
4) Theorem: Analyticity of the Sum of a Series

If Z?:l uj(z) converges uniformly to S(z) forallzinRandif u(z), uy(z), --- are all analytic
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in R, then S(z) is analytic in R.
5) Theorem: Term-by-Term Differentiation

If Zj'):l u;(z) converges uniformly to S(z) forall zin aregion R. If u(z), uy(z), -+ areall
analytic in R, then at any interior point of this region

ds 3 du,(z)

dz dz

J=

Example
Since 1/(1-z)= Zj‘ll Tl =14z42% 4 , where convergence is uniform for |z < r| (with r<1),

we have upon differentiation

d 1 ! _i(1+z+zz+...):1+22+3zz+...,

-z (-2 dz

or ﬁzgjzj_l, |z|<1, r<l.

§5-4 Taylor's Series
1. An infinite series

o0
Yoc,(z—c) =co+ei(z—c)+ete,(z—c) 4o

n=0

is a power series in powers of (z—c), where z is a complex variable and ¢, ¢, €C,n=0,1,2,---.

2. Rz foeE it s
Consider the series

0

A, =0y T Ty,

n=i

1) Ratio Test — Supposethat a, #0, n=0,1,2,--
Anl —

al’l
*** If L =1, the test fails.

lim

n—>0 L>1, divergence.

I {L <1, absolutely convergence.

2) Root Test

lim 4f|a, |=L=
Nn—>0

**k If [ =1, the test fails.

L<1, absolutely convergence.
L>1, divergence.

300 BT NEE G &?

) i[”jn; 2) i(”j

2

n=I\n+ 1 n=1\1n+ 1
<Sol.> In calculus, we have two important and useful limits as following :
n
lim [1+lj =e=2,71828 -----eem- @)
n—»o n
lim 20 = ?)
n—0 X

1) Here, we shall use equation (1).
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n
. . n
lim g, = lim
n—»o0 n—o\n+1

n
. n
lim
n—»0 (n + lj
lim

—m n
)
n

:l¢0
e

Since the n-th term of the series is not equal to zero, thus the series is divergent. That is,

0 n
n o
Z( j is divergent.
n=1\ " +1
n "
2) lim ¥|a, | = lim ( j
n—>o0 n—o|\n+1

n Y o1
:lim( j =—<1
n—o\n+1 e

2

© 2

n " .

= Z 1s convergent.
n=1\ 1+ 1

4. Radius and Circle of Convergence of Power Series
Every power series

gocn(z_zo)n ---------- (1)

has a "radius of convergence" R, and can be defined as

i) R = lim

such that
a) 0< R <o, the series (1) converges absolutely for |z—z,|<R

and diverges for |z—z,|>R

b) R =0, the series converges only at z =z,

A
o divergence
Convergence |« % [Fl ¢ 2 87 7 33
HEE ZHFIE &
~
lz—z,|=R
> X
0

5. Theorem

o0
If Z o (z—zy)" converges when z =z, then this series converges for all z satisfying
n=

|z - Zo| < |zl - Zo| . The convergence is absolute for these values of z .
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2]

> X
0
6. Theorem: Uniform Convergence and Analyticity of Power Series
0
If Zn:O ¢,(z—z,)" converges when z =z, where z; # z,, then the series converges uniformly for
all z in the disc |z— Zo| <r,where r< |zl - Zo| . The sum of the series is an analytic function for
|z - ZO| <r.
<pf>

We need to use the Weierstrass M test to prove this theorem. Consider the convergent series

- 2
Z:cn(z1 —z,)' =c¢c,+¢(z,—zy)+c,(z,—z2,) +...,
n=0

2
For the preceding convergent series of constants, we can find a number m that equal or exceeds the
magnitude of any of the terms. Thus,

c,(z, —ZO)”‘SM, n=0,1, 2, ..... 3)
Now consider the original series

zn=0(:n(z—zo):c0 +cl(z—zo)+cz(z—zo)2+..., @)
where we take |z - zO| <r and r< |z1 - zo| . Notice that the terms in Eq. (4) can be written

n

z—z
c,(z=2))" =¢,(z,—z,)" 0

zZ,— 2,
Taking magnitudes yields
n n Z - Z
c,(z—z,) ‘: ‘cn(z1 -z,) 0 5)
2172

Let p= r/|z1 - zO| , where, by hypothesis, p <1. Since |z - zo| <r,we have

z—z

H<p  ©
Z,— 2z,

Simultaneously applying this inequality, as well as Eq.(3), to the right side of Eq. (5), we obtain
¢, (z— zo)”‘ <mp" (7

mp" . From Eq.(7), we have
c,(z—z)'"|1EM,. (8

The summation

Let M, =

o0 0 o0
n n
2M, =3 mp"=m) p", p<l

n=0 n=0 n=0

involves a convergent geometric series of real constants.

©)

Eq. (7), Eq. (9), and the theorem of Weirestrass M test guarantee the uniform convergence

o0
Z o (z—z)" for |z - Zo| <r. Because the individual items c¢,(z—z,)" in this series are each
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analytic function, it follows that the sum of this series is an analytic function in |z - Zo| <r. Q.E.D.

7. In each of the following cases, the radius of convergence is equal to 1.

1) The series z z" does not converge for any point on the circle of convergence.

n=0
2)
n=1 n
3) The series Z— converges for z=-1 and diverges for z=1.
n=1 n
8. Theorem: Taylor's Series
If the power series is
f()=2e,(z=z)" . |z=7|<R
n=0
and suppose that the function f is analytic in the interior of a circle C, with center at z, and radius R.
Then, we can rewrite the function f in the form of Taylor's series:
ﬂ
f(z)= Zf (0)(2 E S (— (1)
where |z—zo|<R.
<pf.> Since

f(z)= §0cn<z—z0>"

=¢p +cl(z—zo)+(:2(z—zo)2 +ote,(z—z))" +
Then, we know that
fl(2) =) +2¢)(z—29) +3cy(z—20) 2+ +nc,(z—z)" " +
f(2)=2¢, +3-2(z—2y) +4-3(z—zy)* +-+n(n—1)(z—2z))"" +

f(ﬂ)(zo) =nl c,

= f(z9)=¢y
f'(z)=¢
f"(z)=2! ¢,

f(n)(zo) =n! c,
Hence, we have

f(z)= gocn(z—z(o"
BPANEN)

nl

= f(z0)+ Sz~ z0)+f”( 20) (g s G oy

I WANO) (C) oy

n=0

where f<°>(zo)=f(z0), and 01=1.

%  Maclaurin Series
If z, =0, we call the Taylor series a Maclaurin series, i.e.,

S (n)
f(2)= chz" , |z|<R,where ¢, = _J '(0)
n=0 n!
<pf>
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Assume the function f(z) isanalyticat z=0.Let z
be that singularity of f(z) lying closestto z=0.
Construct a circle C centered at the origin and passes
through z,. The radius of the circleis a = |zs| . Let

z; lie within this contour. We enclose z; by a second

circle C’centered at the origin but having a radius less
than that of C. Since the radius of C' is b, we have
|zl| < b < a . By Cauchy integral formula,

_ 1 f(z) S(z)dz
S(@)= 27 ¢C dz = 27i 95

(z-z,) ( lj' (A)

Now consider

1 z, |z ’
=l4+—+|—| +--
l—i z z

z
The above series is uniformly convergent when

“L <7, where r<l1
z

If z is confined to the contour C', we observe |z1 / z| <1, and we can readily find a value of r

satisfying the above equation.
The function f(z)/z is bounded on C'. Thus, we have

S N M
Z(l—zlj z z zZ
zZ

which is uniformly convergent in some region containing C'. Using a term-by-term integration, we
have

1 z z z z? z
f(Zl): ¢ f( )dZ+ l'é f(z)dZ+ 1'¢ f(3)dZ+"'
2rid ¢z 2rid ¢z 2rid ¢z
From the extended Cauchy integral formula,

Lg L0 SO g
2ri Y ¢ n 7

Thus, for |Z1| <b<a wehave

o0
fz)=) 2" =c +az+cz .. (A)
n=0
where

_ /")

n n!

Replacing what is now the dummy variable z, in Eq. (A) by z, the correctness of Maclaurin Seires
have been demonstrated.

For Taylor series ( z, # 0 ), the integrand is now written as

f() _ AC))

Z_ZI_Z_ZO|:1 (z1— ZO):|
(z—2z0)

and a series expansion is made in powers of (z; —zy)/(z—z;).
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H.W.1 Follow the suggestions given above and give a proof valid for any z, #0.

[ #3g4 p : A. David Wunsch, Complex Variable with Applications, 3" ed., Problem 2, Exercise 5.4,
Pearson Education, Inc., 2005.]

& If f(z) satisfies the conditions described in the above theorem, then f(z) can be represented
within the domain |z - Zo| <b (where b<a)by the sum of a power series with a finite number of

terms plus a remainder, i.e.,
N-1
f(2)=D eu(z—z0)" + Rv(2)
n=0

Here ¢, isagain f (”)(zo)/ n!, while Ry(z) isexpressed as a contour integration around the circle

|z—zo|=b.

2ri C'Z”(Z—Zl)

RE S C N

n

H.W. 2 (a) Refer to the proof of the above theorem and to the above figure. Use Eq. (A) (in previous page) to

show that

1 1 =z 27 () 1
S@) =5 f@ 4| 2 dz

2mi s ¢ z z z" z) z—z

<Hint> Refer to the following equation
LR 1
Z:z"1=l+z+zz+...:S(z):1 , |z|<l.
-z

=1

which implies that

=l+z+z22 4+ +
-z -z

and replace z by z;/z

(b) Use the expression for f(z;) given in part (a) to show, after integration, that

) o SO o U0
FG)= FO)+ [0z + 55 P2l e 0

"'+R,

where

S QY A CY RS
2rid ¢z (z-2z)

We see that R, , the remainder, represents the difference between f(z) and the first n terms
of its Maclaurin expansion.
(c) We can replace an upper bound on the remainder in the above equation. Assume |f (z) < m|

everywhere on |z| =b (the contour C"). Use the ML inequality to show that

z [ mb

IR,|<|-- (4)
bl b —|zl|

<Hint> Note that for z lying on the contour C’
1 1

<

z—z)| b- |zl|

Why?

In passing, we notice that since |z1 / b| <1, the remainder R, in eq. (4) tends to zero as

n — o . Using this limit, we find the right side of Eq. (2) becomes the Maclaurin series of
f(z;) . This constitutes a derivation of the Maclaurin expansion shown in the last equation (in

page 114) not requiring the use of uniform convergence. A similar derivation applies for the
Taylor Series.
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(d) Suppose we wish to determine the approximate value of coshi by the finite series
O +i2 /2144107101, Taking the contour C' in Eq. (3) as |z| =2, show by using Eq. (4) that the

error made cannot exceed (cosh2)/ 21023.67x1072.
[ #3834 p : A. David Wunsch, Complex Variable with Applications, 3" ed., Problem 32, Exercise 5.4,
Pearson Education, Inc., 2005.)

9. Some Examples

Example 1
Let us show that

1 1< z—2Y
== D (=)' m+1)| ==
> 450( )" ( )[ zj
where |z-2|<2.

<pf.> Let function f'be defined by f(z) = ZLZ , Vz#0.

Clearly, fis analytic for all z interior to the circle c¢=|z-2|=2.
Differentiating /' with respect to z by »n times, we obtain

_1y” '
SO = IR 02,
z
Thus,
_1) '
= ED D D;TD' , n=0,1,2,

Utilizing Eq. (1), with ¢ =z , we have

L_y D@Dl

22 n=0 2n+2 -nl
jn

- Z(—l)”(nﬂ)(
4 =0

where n=0,1,2,---.

z—=2
2

Example 2

Expand e° in (a) a Maclaurin series and (b) a Taylor series about z =1 .
<Sol.>

(a) e =cy ez ez b

In the coefficient formula of Taylor series, with z, =0,

n
d & |
d"~ 0 _ € 1
Cn = =— |z:0: —
n! ! !
Thus
N1
e =) —z
n=0 l’l'
(b) eZ=co+01(z—i)+cz(z—i)2+---
In the coefficient formula of Taylor series, with z, =i,
d" .
dZVl € z i
A M
n! n! n!
z=1

thus
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z (z —1)"
n=0 1
Example 3
Expand

1
@)=

in Taylor series zm o (z+1)" . For what values of z must the series converge to f(z) ?
n=

<Sol.>
We can find ¢, =1/2, ¢, =1/4,and in general, c,=1/2"". Thus,

f@)=——= Z o (z+1)"

R L A L LEE

1) ! =ltz+z2 442"+
1-z
=2.z", |z|<1
n=0
n Z2 Zn
2) e =ltz+—t Tt
2! n!
=ZZ , forallz.
n=0 1!
3 ZS 2n+1
3) sinz=z—-"—+—+--+(=1)" "
31 5! 2n+1)!
» ZZn+1
=2(-)"———, forallz
=0 2n+1)!
22 24 26 2n
4) cosz=l-—+"—-"— +(=1)"
21 4! 6. (2n )v
Z , forallz.
:0(2;1)'
z 22n+1
5) sinhz=2,——, |z|<®
) Lo 7!
iZZH
6) coshz=2,——, |z|<®
) n=0 (2n)! 2]
2/1+]
7) tan” z—Z( S fzl<l.
8) (1+Z)p:1+pz+$zz+.._+p<p—1)(p—2)'-~(p—n+1)zn+_“’ 21<1.
: n!

n+1

9) In(l+z)= Z( 1y =

© n+l
10) In[ 12 =Zzz . z|<1.
1-z) n=02n+1

, lzl<1.

10. Some Theorems
1) The Taylor series expansion about z, of the analytic function f(z) is the only power series using

powers of (z—z,) that will convergeto f(z) everywhere in a circular domain centered at z, .

2) Let f(z) be expanded in a Taylor series about z, . The largest circle within which this series
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converges to f(z) ateach point is |z - zo| =a,where a isdistance from z, to the nearest
singular point of f(z).

Example 4

Without actually obtaining the Taylor series give the

largest circle throughout which the indicated expansion is
valid:

S == e (z=2)"
n=0

22 +1 =

<Sol.>
The singularities of f(z) lie at *i.The nearest
singularity to z =2 is, in this case, either +i or
—i . The distance from z=2 to these points is

NS Thus, the Taylor series converges to f(z)
throughout the circular domain |z - 2| <5

Example 5
Consider the real Taylor series expansion

1 o0
=> ¢, (x=2)"
2+l ”Z;‘

Determine the largest interval along the x -axis inside which the series converges to 1/(x* +1).
<Sol.>

By requiring z to be a real variable ( z = x ) in the previous example, we require
2-J5<x<2++/5 for convergence.

& Remarks on Analyticity
A function f(z) is analytic in a domain D if
(a) f'(z) exists throughout D;
(b) f(z) has derivatives of all orders throughout D;
(¢) f(z) hasa Taylor series expansion valid in a neighborhood of each point in D;
(d) f(z) isthe sum of a convergent power series in a neighborhood of each point in D.

§5-5 Techniques for Obtaining Taylor Series Expansions

1. Substitution Method

Example 1
Given
L=1+w+w2+~--, W< 1.
I-w
l=1+(1—z)+(1—z)2+(1—z)3+---
= z

(1)
=1-(z-D+(E-1)" ==+, |z-1|<1

H.W.1 Show that, for N >0,

1 o0 — |
—ZZ cz", where ¢ =M, 2] <1
(1-w)" n=0"" " (N -1)!

[ #3834 p : A. David Wunsch, Complex Variable with Applications, 3" ed., Problem 7, Exercise 5.5,
Pearson Education, Inc., 2005.]
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2. Term-by-Term Differentiation and Integration

Example 2
Use term-by-term differentiation and the result in Eq. (1) to obtain the expansion of 1/z° about
z=1.
<Sol.>
Differentiating both sides of Eq. (1) with respect to z and multiplying by (-1), we obtain

iz =1-2(z-D+3(z- 1)2+"':i(—1)"(n +D(z=-1)"
z n=0

valid for |z-1|<1.

H.W. 2 Differentiate the series of Eq. (2) to show that

%:I—E(Z—I)Jrﬂ(z—l)z—ﬂ(z—l)3+-~-, lz-1Kk1.
z 2 2 2

[ #3834 p : A. David Wunsch, Complex Variable with Applications, 3" ed., Problem 5, Exercise 5.5,
Pearson Education, Inc., 2005.])

Example 3
Obtain the Maclaurin expansion of

Si()=[ f(z)dz', @)
where
sinz'

n 1
f(Z)_ Z' s Z 7509 (4a)
£(0)=1, z'=0. (4b)
The function Si(z) is called the sine integral and cannot be evaluated in terms of elementary
functions. It appears often in problems involving electromagnetic radiation.
<Sol.>
From the examples in page 118, we have
. ! 3 ! 5
51n2' — Z'_Q_FQ_F...

b

3! 5!
: ' n2 n4

N sinz :1_(2) +(z) e
z' 3! 5!

We now integrate as follows:

esinz' e =2 e (2) 2 7
j—dz :I dz+I ——dz +.[ ——dz'+-=z— + + -
o z' 0 o 3! o 5! 3-3! 5.5!
Thus,
Si(2)=Y ¢,z (5)
n=0
where

o = (=D"
Qn+1)!12n+1)

The expansion is valid throughout the z -plane.

H.W. 3 (a) Explain how the following series is derive:

1

1+z
(b) Integrate the series in part (a) along a contour connecting the origin to an arbitrary point z , where
|z| <1, to show that

—=1-z+z =, |Z|<1
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2n+l

= z
tan”' z = -1)'—— |zk1. A
;( V' |zl (A)

(c) We might put z=1 in the preceding expansion to obtain tan'1=7z/4=1-1/3+1/5—---. This
expansion, which could be used to obtain 7 /4, is valid, although not justified by our method,

which assumed |z|<1.

This series converges slowly and is not useful for computing 7 . A more useful series is obtained in
the following.

Prove that tan™'(1/2)+tan"'(1/3)=7/4 and with aid of (b) derive the more rapidly converging
series:

1 1 1 1 1 1
—+— —+ +
7 (1 1) 8 27 32 243 128 2187
—=|—+= |- + +-e-

4 \273 3 5 7

(c) Compare the two series for 7/4 given in (b) by using the first 10 terms in each and seeing how
well 7/4 is approximated. MATLAB is recommended here.
[ #3g4 p : A. David Wunsch, Complex Variable with Applications, 3" ed., Problems 2 and 8, Exercise 5.5,
Pearson Education, Inc., 2005.])

<Ans.>
(¢) MATLAB Command:
% Two ten term series approximations to pi/4 for problem (c) in H.W. 2
format long
s=0;
for n=0:9
s=(-1)"n*1/(2*n+1)+s;
end
sl=s
s=0;
for n=0:9
s=(-1)"n*(.5°(2*n+1) +(1/3)"(2*n+1)) /(2*n+1)+s;
end
s2=s
exact=pi/4 sl =
0.76045990473235
MATLAB Output s2 =
> 0.78539814490159
exact =
0.78539816339745

3. Series Expansions of Branches of Multivalued Functions

Example 4

1/2

Find the Maclaurin expansion of f(z)=(z+1)'“, where the principal branch of the function is used.

Where is the expansion valid?
<Sol.>

Recall that the branch in question is identical to e

S/2)Ln(z+1) 1 _ (z+ 1)1/2
2z+1)  2(z+1)

We may of course differentiate indefinitely and thus have

f(l)(Z) = %(Z_’_ 1)1/2—1’ f(2)(Z) — %(%_ 1)(24— 1)1/2—2’

f(S)(Z) — %(% — ])(% — 2)(2 + 1)1/2_3, etc.

1/25n(z+D) - and that its derivative is given by
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In general,

f(n)(Z) = %(%— 1)(%—2)(%_(,1 _ 1)} (z+ 1)1/2—n ©)

Note that (z+1)"">™ must be interpreted as

(z+ 1)1/2 /D) Ln(z+1)

(z+1)"  (z+D)"
When z =0, this function equals e"2™*™) /1" =1. With this result and Eq. (6) and the coefficient
formula of Taylor series (¢, = f (M (0)/n!), we finally have

(1 + Z)(I/Z) = ZCnZn (73.)
n=0

where
¢ =1

1111 1 1
A i) e oo

The singularity of (z+ 1)'? nearest the origin is the branch point z =—1. Thus, Eq.(7) is valid in the

domain |z| <.

H.W. 4 (a) Let a be any complex number except zero or a positive integer. Using the branch of (1 + z)* defined
by €% (principal branch), show that for |2 <1,

A+2)* =1+az+

a(a-1)z N a(a-1)(a-3)z +...=1+ch2n
21 3! =1

where ¢, = (L'j [a(a-1)(a-3)--(a-(n-1))]. Follow the method of the above Example
n!

(Example 3, Section 5.5, in textbook).
(b) Show that if o is a positive integer, then (1+2z)" =1+ Z:zl CnZ" , where ¢, is given in Part (a).

where is this expansion valid?
[ #3883 p : A. David Wunsch, Complex Variable with Applications, 3" ed., Problem 29, Exercise 5.5,
Pearson Education, Inc., 2005.])

H.W.5 (a) Use the result derived in H.W. 3 (a) and a change of variable to show that

1 z (1\(3)\zZ* 1Y 3)(5)zZ
e L )2 ) 2) BN e
(1-z2) 2 (2)\2)2 2 2){2)3!

Use the first four terms of this series to evaluate approximately \/E . Compare this with the value
obtained from your calculator.
(b) Show that

1 1, 1Y 3)z* 1Y(3)(5)z°
———=l+=+| < || S |=++ = [ 2] = =+ A<l
(1-2z9) 2 2)\2)2! 2)\2)\2)3!
(c) Use the preceding result and a term-by-term integration to show that
3 5 7
z 1-3z 1-3-5z
+ +— +—
2-3-1! 2°.5.20 2°.7.3!
where this branch of sin”' z is analytic inside the unit circle, and sin~'(0) = 0 . Note that

P
Sim z=2

+eoe, Jz|< 1

cos”' z=(m/2)—(the seriers on the above right), provided |z|<1.

(d) Use the series for sin”' z to obtain a numerical series for 7 /6. Use the first four terms of your

result to evaluate approximately 7/6.
[ #3834 p : A. David Wunsch, Complex Variable with Applications, 3" ed., Problem 30, Exercise 5.5,
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Pearson Education, Inc., 2005.]
4. Multiplication and Division of Series

Example 5
(a) Using series multiplication, obtain the Maclaurin expansion of f(z)=¢” /(1-z) .
(b) Use your result to obtain the value of the 1oth derivative of f(z) at z=0.
<Sol.>
(a)
With ¢ = ano z"/n! (valid forall z)and 1/(1-2z)= anoz" (for |z| <1), we have
2 3

f(Z):(1+Z+;—!+%+---J(l+z+zz+---)

=1+(]+1)Z+(]+1+l)22+(1+1+i+ijz3+...,
2! 2! 3!

or, equivalently

z

e o0
=>cz, (8a)
1+z ,;‘

where

c, = Zi' (8b)

j=0J*

Eq. (8a) is valid only for |z|<1.
(b)

It is a little tedious to obtain the 10™ derivative of f(z) by differentiating this function 10 times.

Note, however, that in the Maclaurin expansion f(z) = zm o€ z" ,wehave ¢, =f M (0)/n!.
n=

n

Thus, using the result of part (a) and taking » =10, we find

< 1 1 1
Y0)=10!) —=10!| 1+ —+—+---+— |.
/7O _/Z:;‘j! 1 2! 10!

& The Quotient and Product of Two Analytic Functions
1) Suppose f(z) and g(z) are both analytic at z,.If g(z,)#0, the quotient

z
=22 )
g(2)
is analytic at z, and can be expanded in Taylor series about this point.
2) Let the series  f(z), g(z),and h(z) are

W= =2 [=) aG-z2)", &)=Y b(=z)"
where a, and b, are presumed known and the coefficients ¢, are unknown.
3) According to the Cauchy product, we have

i(}n(z - ZO)nibn(Z - ZO)n = ian(Z — ZO)n
n=0 n=0 n=0
and

cobo + (cobi + c1bo)(z — 20)' + (coba + c1bi + c2bo)(z — 20) + -+
=ao+ai(z—zo)+axz—zo)* +---
Equating coefficients of corresponding powers of (z—-z,), we have

cobo = ao, (10a)
cob1+ c1bo = ay, (10b)
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cob2+ c1b1 + c2bo = a2, (10c)

From the first equation, we have

co=L" (l1a)
=— a
bo

and then
ar  aobi
cr=——— (11b)
bo  bo
o ab, +ayb, N a,b! (110)
2= 2 3
b, by by

The process can be repeated to yield any coefficient ¢, , where n is as large as we wish.

Example 6
Obtain the Maclaurin expansion of (e —1)/cosz from the Naclaurin series for ¢ —1 and cosz.
<Sol.>
From previous paragraph, we have
2 3 2 4
B z z5 z
e —-l=z4+—+—+-- (12) and cosz=1—-—+——"--- (13)
2! 3! 2! 4!

We divide these series as follows:

2 4 ) 2 3 4
z z z
-t =zt =+ —+—+
2! 4! 20 31 4!
i
z -= +
2!
z 3(1 j z*
_+Z JE— JR— —_
2! 31 21 4!
z? z*
— - +..
2! (21°
5 1 1 4 1 1
|l —+—|+z"| —+
31 2! 4! (2!)2

+...
Recalling that cosz=0 for z=%x/2, we have

valid for |z| < /2. Our division shows that

=0, ¢ =1, ¢,=1/21, ¢;=(1/31+1/21)=2/3

H.W. 6 (a) The Bernoulli numbers By, By, B,, ... are defined by

B, =nlc,
where
z
—, z#0 >,
f(2)=4¢ -1 =>cz".
1 z=0]
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Note that f(z) isanalyticat z=0 since, forall z,
z z 1

o1 2 z Z
Z+—+—+- I+ —+—+--
2! 3l 2! 3!
Perform long division on the right-hand quotient to show that B, =1, B, =-1/2, B,=1/6.

(b) Show that the coefficients of odd order beyond 1, i.e., B3, Bs, By, ... are all zero.
<Hint> f(z)+2z/2=(z/2)cosh(z/2)/sinh(z/2) is an even function of z. See Problem 30,
Section 5.4, Textbook.
(c) Where is the series expansion of Part (a) valid?
[ %384 p : A. David Wunsch, Complex Variable with Applications, 3" ed., Problem 27, Exercise 5.5,
Pearson Education, Inc., 2005.]

5. The Method of Partial Fractions
Consider a rational algebraic function

L _P@)
r&=50

where P and Q are polynomials in z. If O(z,) #0,then f(z) has a Taylor expansion about z,.

Rule I (Nonrepeated factors)
Let P(z)/Q(z) be arational function, where the polynomial P(z) is of lower degree than the

polynomial Q(z).If Q(z) can be factored into the form
O(z)=C(z—a)(z—az2)---(z—an) (14)

where a,, a,, --- are all different constants and C is a constant, then
P(z) A A2
= + +- 4 (15)
O(z) z—ar z—-az Z—Qn

where 4,, A,, --- are constants. Eq. (15), called the partial fraction expansion of P(z)/Q(z), is
valid for all z;taj(j:L 2, -, n).

Rule II (Repeated Factors)
Let Q(z) be factored as in Eq. (14), except that (z—a,;) appears raised to the m; power, (z—a,)

appears raised to the m, power, etc. Then P(z)/Q(z) can be decomposed as in Eq. (15), except

that for each factor of Q(z) of the form (z —aj)mf' ,where m;>2, wereplace 4;/(z-a;) inEq.

(15) by
Aj Aj2 Ajm,
+ St —
(z-a) (z-a) (z—a)"
Example

z A A2

Rule I tell us that = +

(z=D(z+1) z-1 z+1

z An A A>

Rule II tell us that > = + =+
(z-D(z+1) z-1 (z-1)" =z+1

&  Four useful Maclaurin expansion

(1) ;=l+w+w2+~-, w1, (16a)
1-w
) L:l—w+w2—w3+---, [wik1; (16b)
1+w
1 2
3 ———=14+2w+3w +---, |wkl; 16
I T wl (160
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1

(4) m:1—2w+3wz+---, lwk1; (16d)
Example 7
Expand
f@)=o .

t—z-2 (Z+1)(Z—2)
in a Taylor series about the point z=1.
<Sol.>
From Rule I, we have

z a b
= + .
(z+1)(z-2) z+1 z-2
Clearing the fractions in Eq. (17) yields
z=a(z-2)+b(z+1)
We can find @ and b by letting z in the above equation equal —1 and 2. For another approach, we
rearrange the previous equation as

z=(a+b)z+(-2a+b)
Thus, we have
Z' coefficient: l=a+b

2% coefficient: 0=—2a+b
whose solution is

a=1/3, b=2/3
Hence, from Eq. (17)
z _1/3 N 2/3
(z+1)(z-2) z+1 z-2
To expand z/[(z+1)(z—2)] in powers of (z—1), we expand each fraction on the right in Eq. (18)
in these powers. Thus,

_ _2
/3 13 1/6 _1{1_(2 D, (=D

)

(18)

- - - —eee|, for |z-1]<2 (19
241 (z-D+2 ., (-D 6 2 4 } or =<2 (19)
2

The preceding series is obtained with the substitution w=(z—-1)/2 in Eq. (16b). The requirement
|z - 1| <2 isidentical to the constraint |w| <1.

Similarly,

2/3 __ 213 —2/3 =—%[1+(z—1)+(z—1)2+---], for |z-1|<1 (20)
z-2 (Z H-1 l—(z—l) 3

where we have used Eq. (16a) and taken w=z—1. The series in Egs.(19) and (20) are now
substituted in the right side of Eq. (18). Thus,

oz N[ @D @y 2
(Z+1)(Z—2)_6{1 7 + 4 } 3[1+(z D+(z=1)2+--].

|=-1}<2

|z-1<1

In the domain |z - 1| <1, both series converge and their terms can be combined

z
m—(g—? (_E_E)( z—1)+ (———)( —1)* +

or

—(z+1)(z 2)—;@(2 D' Jz-1k1l @D

where
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Example 8

Expand

I &= e

in MAclaurin series.

<Sol.>

H.W.7

From Rule I, we have

z A B
> = + =+ .
(z+D(z=-2) z+1 (z+1) z-2
Clearing fractions, we obtain

2= A(z+1)(z-2)+B(z=2)+C(z+1)>  (23)

(22)

or
z2=(A+C)2* +(~A+B+2C)z+(-24-2B+C). (24)
By putting z=2 andthen z=-1 inEq. (23), we discover that C=2/9 and B =1/3. Note that

z? does not appear on the left in Eq. (24), which means z*> must not appear on the right; hence
A=-C=-2/9.Thus from Eq. (22)

z _—2/9Jr 1/3 +2/9
(z+1)*(z=2) z+1 (z+1)}? z-2

We now expand each fraction in powers of z . Taking w =z, we have, from Eq. (16b),

(25)

_2/9=—3[1—z+zz—---], |z <1,
1+z 9
and, from Eq. (16a)
L32=l[1—2z+322—423+---], |z <1,
(1+2)
With w=2z/2 in Eq. (16a), we obtain
2/9  -1/9 z 7

1 z
= =——[l+=+—+], |zk2.
z-=2 1-2z/2 9 2 4
The substitution of the three preceding series on the right in Eq. (25) yields
z 2 1
=—[l-z+7 —---]+§[1—22+3z2 —4z 4]
\_w—_d

(z+1)*(z-2) 9

zi<1

1 z Z
——ll+—=+—+-
9 2 4

|z]<2

lzl<1

Inside |z| =1, we can add the three series together and obtain

Z 0
E.—— U PO 26
Gy &e 17 0

cn=(=1)"" 2 + %(I’l +1)- %(lj’

where

9 2

Obtain the following Taylor expansions. Give a general formula for the nth coefficients, and state the
circle within which your expansion is valid.
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z+1

(a) m expanded about z =2

1
(b) m expanded about z=2;
( © expanded about z =0; and

) Dz

24222 +z-1
(d 5
z-—4

[ #3883 p : A. David Wunsch, Complex Variable with Applications, 3" ed., Problems 19-21 and 23,
Exercise 5.5, Pearson Education, Inc., 2005.)

expanded about z=1.

§5-6 Laurent Series

& Basic Concept: Limitation for Taylor Series
(1) Negative exponents never appear in Taylor series.
(2) A Taylor series expansion is only valid in a disc-shaped domain.

Example 1
Consider a series expansion
1 z 1 1 1 .
—= =l+—+—+...,for |=|<], orequivalently, |Z|>l
1_1 z—1 z z z
z
-1, 2 2, -1
= 1=1+z +z70 4=z L for 2> (1)
Z_

This series is not a Taylor series as the above-mentioned reasons.

Example 2
Consider the Taylor series
1 2
=l+=+=—+-, |7<2.
1-(z/2) 2 4
or
2 z Z
=l+=+=+, [7<2.
2—z 2 4
If we add together Eq. (1) and the preceding, we have the series expansion
z 2 _ _ z Z
+ =4z 24 T e, 1<7<2
z—-1 2-z 2 4

This is a special case of series called Laurent series. The ring-shaped domain 1< |Z| <2 isthe

intersection of the sets of points where the two series used in the calculation are valid.

1. Definition (Laurent series)
The Laurent series expansion of a function f(z) is an expansion of the form

0

f(z)= Z c(z—z,) = +c-2Az—2z0)" +c-1(z—z0)" 3

+co+ci(z—zo)+---
where the series converges to f(z) in aregion or domain.

& Examples of Laurent series are often obtained from some simple manipulations on Taylor series.
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Example 3
Given a series
2

u u .
e =1+u+5+---,allﬁmte u

Putting u=(z- 7! in the preceding equation, we have

JRUCE I 1+ (z— 1) +(Z 1) (Z_l)_3+

, z#1
2! 3!
1/(z-1) (z- 1)73 (z- 1)72 (z— 1)71
= e =4 + + +1, z=#1 4)
3! 2! 1!
This is a Laurent series with no positive powers of (z—1).
Multiplying both sides of Eq. (4) by (z—1)*, we have
z—1)"
(z=1)’e" " = ( ) Py (z=D+(z=1, z=#1 5)

3!

This is a Laurent series with both negative and pos1t1ve powers of (z—1).

& Applications of Laurent series:
1) An understanding of the calculus residue
2) Basis of the z-transformation.

2. Theorem (Laurent’s Theorem)
Let f(z) be analytic in D, an annular domain # < |z - Zo| <rn.If z liesinD, f(z) canbe
represented by the Laurent expansion
f(z2)= Z c(z—z,) =+c-2Az=z0) " +c-1(z—2z0)" ©)
+co+ci(z —zo) + ¢z — zo)* + -+

The coefficients are given by

f(2) Ay
n — 7
‘ 2z gsc (z—z0)"" z

where C is any simple closed contour lying in D
and enclosing the inner boundary |z - zO| =17;. The
series is uniformly convergent in any region
centered at z, and lying in D.
<p£>
For simplicity, we consider a proof in which z, is
zero; that is, we seek an expansion in an annulus
centered at the origin.
Annulus: 7 <|z-0|<7r. 0

Contour (' lies in the annulus. Observe that C'
encloses the point z; and that f(z) is analytic on and inside the contour.
Cauchy integral forrnula'
S,
flzn)= gSC dz  ®
z—Z1

The portions of the precedlng integral taken along the contiguous lines /; and /, cancel because of the
opposite directions of integration. Thus, Eq.(8) becomes

f(z))=Li+1Is 9

where

Li= Lgfj ACIP (10)

27i Y ld=r2 z — 7
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and

> X I
) \ . \ }
\Z] S~ /
P2
N _ P
Contour C' Detail of Contour C'

1 z

Is= —4) ACIP (a1
27i TPl z = 21

Follow the derivation of the Taylor series in the previous section, we have

2
271 ¥ led=p 21 1 271 Yz z z
z (12)

o0
—_ n
= E C,Z1
n=0

where

1 f(Z)
- dz. n=0,1,2, - 13
Cn 27[1'95\ 2 (13

A=p, "
In Eq. (12), we require that |z1 /z| <1 or |zl| < p, (since |z| < py).
In the integral 1, we reverse the direction of integration and compensate with a minus sign in the
integrand. Thus,

S@, 1 f(2)
Zm 95\ i 95\2\*/31 dz (14

2= 21—z 2m z
z| 1——
Z

z <1 or |Z|<|Zl|
Z1

Now

2
1 z z )
—:1+—+(—j e if
l—i Z1 Z1

4\
This series converges uniformly in a region containing the circle |z| =p, (since |z| =p < |zl| ). Using

this series in Eq. (14), and integrating, we obtain

2
L :Lg} & 1+£+(£) +.e|dz
27l Y ld=p z1 Z1 4

-1
Z1

==& fz )dz+—98 zf(z)dz+— zzf(z)dz+---

27i ¥ lE=a l2=p,
We have the constant z, outside the integral signs. We may rewrite Eq. (15) more succinctly as

s)

Is= i cnz1", |Zl| > pi, (16)

where
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=z L Daz e 21
27i ¥ lA=a

271 ¥ e z"
Combining Egs. ( 16) and (12) into the right of Eq. (9), we have

f(z)= Z cnz1” + z cnzt” (18)

‘Zl‘</72 ‘21‘<P1
where
z
gS f( ) L n=0, 1, £2, ... (19
27[1 o "

We can rewrite Eq. (18) as a single summation,

f(z1)= ZOO: cnzt” (20)

that is valid when z; satisfies p, < ‘z] ‘ < p, . This restriction can be relaxed to # < |zl| <n.
Replacing z by z in Eq. (20), we find that we have derived Eq. (6) for the special case z,=0.

& We may conclude that the coefficients for our Laurint series with z, =0 are given by

/(0)

cn=———=_ for n20 21
n!
1) This maneuver is not permitted here!!!
2) The Cauchy integral formula and its extension apply only when f(z) in Eq. (19) is analytic not
only on C but throughout its interior.
= We have made no assumption concerning f(z) .

3. Definition (Isolated Singular Point)
The point z, is an isolated singular point of f(z) if f(z) is notanalyticat z, butis analytic in

a deleted neighborhood of z, .

Example 4
1/[(z=1)(z-2)*] has isolated singular points at z=1 and z=2 since we can find a disc, centered
at each of these points, in which this function is everywhere analytic except for the center.

4. Another Description of Laurent's Series 4
As the figure shown, we have
Cilz=zgl=1n
Gilz—zp|=n
Cilz—zg|=r
where r, <r<r,.
If the function f'(z) is analytic on ¢; and ¢, and

f(z) is analytic in the annulus:

D:rn<|z—z,|<r 0

Then, for every z in D, we have

= /(z)_Za (z—2z)" +Z by (A)
n=1(z—zy)"
where
_ f(2)
a, = i C(Z_Zo)n+l dz
b =& @,

i JC —n+l
27i (Z—ZO) n
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and the Z b is called the principle part of the Laurent Series.

n=1(z-zp)"
*ok ?]ﬁzo;éfﬁ]'u’ﬁrzﬂ'JéCifﬁ]%’:?‘fl?é‘éﬁﬁi’ﬂt“z—zoﬂ?§E§O°
2Tl ¥ on=1pF
1
= =— d.
oL § o

= & oS (2)dz =27 by
where b, is called the residue of f(z) at z =z, thus

Res f(z) = b;

z=2z,

** If f(z) is analytic on a simple closed curve C and at every points interior of C exceptat z =z,

= @ Cf(z)dz =27i iezs f(2)

VA

=
N \
- =
i
#

=5

=]
“

el
=y
™
—
N

Example 5
Expand

1
f(2)=—
z-3
in a Laurent series in powers of (z—1). State the domain in which the series converges to f(z) .
<Sol.>
The only singularity of f(z) isat z=3.A Taylor series representation of f(z) is valid in the

domain |z - 1| <2.But,with z; =1, we canrepresent f(z) in . )
Laurent series applies

a Laurent series in the domain |z - 1| > 2. Recall that Ay ) ]
| Singularity
——=1+w+w+-, |w|<1. (22) .
1—w Taylor series
Now applies
1 1 1/(z-1 ° >t
_ ( ) 23) 1 3

z=3 (z=1)=2 1-2/(z-1)
Comparing Eq. (22) and (23) and taking w=2/(z—1), we obtain
our Laurent series. Thus,

1 1 2 4
= 1+ + ~+-
z=3 z-1 z—-1 (z-1)

== 42z =) +4(z=1)" + -
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The condition |w| <1 in Eq. (22) becomes |2 (z— 1)| <1 or |z - l| >2.

Example 6
Expand

f ( Z) — ;
(z+1D)(z+2)
in a Laurent series in powers of (z—1) valid
in an annular domain containing the point
z="7/2. State the domain in which the series
converges to f(z) . Consider also other series
representation of f(z) involving powers of
(z—1) and state where they are valid.
<Sol.>

Refer to the shown figure.
Since f(z) has singularitiesat -2 and -1,

AY

we see that one such domainis D, defined by 2 < |z - 1| <3, while anotheris D, given by

|z—1]> 3. A Taylor series representation is also available in the domain D, described by |z—1|<2.

Since z=7/2 liesin Dy, itis the Laurent expansion valid in this domain that we seek.

We break f(z) into partial fractions. Thus,
1 1
(z+D)(z+2) (z+1) (z+2)
Rewrite the first fraction as

1 1 1/2

(z+1) (z-D+2 1+(z-1)/2

or, alternatively, as

(24

I 1 _ 1(z-1)
(z+1) (z—-D+2 1+2/(z-1)
Recall that
=l-w+w —w' +--, |w|<1.
1+w

With w=(z-1)/2, we expand eq. (25) to obain

z+1 2 2 4

L—l{l_(z_l)_F(z_l)z I

>

Taking w=2/(z—-1), we expand Eq. (26) as follows:

11 | 2 4
z+1 (z-1)

— + + -
(z=1 (z-1

)

(25)

(26)

if

=(z-1)"-2(z-D)7+4(z-1)" ...

We have expressed 1/(z+1) as a Taylor series and a Laurent series, both in powers of (z—1).

Similarly, for the fraction in Eq.(24), with w=(z—-1)/3, we have

R T T
z+2 (z-1)+3 1+(z—1j
3

3
and, with w=3/(z-1)

3 9
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_1<1orp—u<2 27)

} )

<lor|z=1]>2 (8
z—1

(29)
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1 -1 —z-1)
z+2 (z=D+3 1+43/(z-1)
1 { 3 9 }
=— 1- + == (30)
z—1 (z-1) (z-1)
=—(z=D)"+3z-D)7=9z-D) 7+, |z-1]>3

In the domain D, , the series in Eqs.(28) and (29) converge to their respective functions (but, the series

in Egs. (27) and (30) are of no use). Using these equations, we replace each fraction on the right in Eq.
(24) by a series and obtain

1

m:(Z—l)_ —2(2—1)_ +4(Z—1)_ —ee

‘z—”>2

11 ] G
(2= m—(z=1) -,
3 9(2 ) 27(2 )

‘z—”<3
which, when written in more succinctly, reads

1 +00
— =Y ca(z=1)", 2<|z-1|<3 32
(z+1)(z+2) Z;o (=D 2<f-l<3 (Y
where
cn:(—é)”“, n>0 (33a)
and

cn=(=1)""27"" n<-1 (33b)
& A Laurent series expansion of f(z) in the domain |z - 1| >3, thatis, D,,is possible. We represent

the partial fractions in Eq. (24) by the series shown in (28) and (30). Both are valid in D, . Adding
these series, we have

1 -2
—_—= a(z-1)", |z—1]>3,
(z+1)(z+2) Z;o (=1, |z~
where
o= (=137 =2, n=ee, =3, -2,
Example 7
Expand

1
fTZ)Zzz;:ES

in a Laurent series that is valid in a deleted neighborhood of z =1. State the domain throughout which
the series is valid.

<Sol.>
Observe that f(z) has singularitiesat z=1 and z=0.The annulus 0< |z - 1| <1 is the largest
deleted neighborhood of z =1 that excludes both singularities of f(z).

Decomposing f(z) into fractions, we obtain

1 1 1

z(z-1) - z z-1

This equality breaks downat z=0 and z=1.The second fraction, (z—1)"", is already expanded in

(34

powers of (z—1). It is a one term Laurent series.
For the fraction —1/z, we have the choice of two series containing powers of (z—1). Thus
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1 -1 2
—;:m:—(l—(z—l)+(z—l) —), |z=1<1 @9)

_l:ﬂ:_(z_l)—l(l_ 1 + 12_...]
z 1+1/(z-1) (z=1) (z-1)

=—(z=-)"'+(C-D7=(-D"+ |z-1|>1
Using Eq. (35) on the right in Eq. (34) to represent —1/z, we get

;=—1+(z—1)—(z—1)2+---+(z—1)*1
Z(Z_l) |z—1]<1 z#1

and

(36)

or, more neatly,

1 0
——— = (-D"(z-1)", 0<z-1K]1.
Z(Z - 1) n=-1
& Had we used Eq. (36) instead of Eq. (35) to represent —1/z on the right in Eq. (34), we would have
obtained the Laurent expansion
1 _ _ -
(=) 7 = (=D (=D =
z(z-1)
This expansion is valid in the same annulus as the series in Eq. (36), that is, |z - 1| >1, which is not the
required deleted neighborhood of z=1.

& Laurent series for transcendental functions are sometimes obtained either by division of Taylor series
or by a recursive procedure equivalent to series division.

Example 8
Expand 1/sinz in a Laurent series valid in a deleted neighborhood of the origin. Where in the

complex plane will your series converge to this function?
<Sol.>
Recall that
sinz=0 when z=0, +7, 27, ---

Thus, z=0, —z, 7 are isolated singular points of 1/sinz . A Laurent expansion of this function,

employing powers of z, is thus possible in the punctured disc 0 < |z| <.

0
We seek a series expansion of the form 1/sinz = z ¢,z" . Note that

n=—o0
z = _ _
. :ZZ ¢, 2" =..+tc,z +c,z e tezrez +. (37a)
sinz =
Now from L’Hospital’s rule, we
. . 1
lim =lim =1

=08z 0cosz
If the series on the right in Eq. (37a) is to produce this same limit, we require that

C_2 — c_3:c_4:. P O
. -1 ) -3 . e
Otherwise, the terms ¢,z ', ¢_;z ~, ¢,z ~, etc., on the right would become infinite as z—0.

Having eliminated all ¢, for n<-2,we have

1 -
—=c_z '+, tez+e, 2+, (0< |z| <)
Sin z
Multiplying both sides of the preceding equation by sinz and using the expansion
. Z3 Z5
sinz=z——+4+——+---,
31 5!

we have
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%

3 5
z z _
l=(z-=—+=+.)c,z" +c,+cz+c,z° +..)
31 50 1 0T G 2
Now multiplying the series on the above right and equating the coefficients of the various powers of
z to the corresponding coefficients on the left, we find

2% term: l=c |,
1 . —
z term: 0=c,,
c
Z* term: 0=c¢ ——,
3!
C
2> term: OZCZ——O,
3!
& C
z* term: 0O=c,—Lt+—,
31 5!
-, ete.
Then, we find the coefficients of all even powers,
cg=c=cy4=--=0

and
c1=1, ¢, =1/6, c=-1/5+(1/3!)/3!=7/360, ---
and when 7 is odd, the general form of ¢, is shown as below

c =|Sn=2_Sna  Cn6 4“1
" 357 (n+2)!

Thus, we have

1 1 z 72°
e ()<|z|<7z' (37b)
sinz z 6 360

In the following figures, we have plotted an approximation to |1 /sin z| obtained by our using the first

. . . . c_
five terms in the Laurent expansion of 1/sinz ; i.e., we have graphed |—-+c,+ ¢,z +¢,z° +¢;2°| for
z

the domain 0 < |z| < 7 . For comparison, we have plotted in the shown figure the function |1 /sin z| .

section 5.6, approximate plot of | 1/sin z |
x=[-3.5:0.05:3.5];

y=[-3.5:0.05:3.5] ;
[X,Y]=meshgrid(x,y);

Z=X+i*Y;
w=1./Z+(1/6).*Z+(7/360).*Z."3,
wm=abs(w);
meshz(X,Y,wm);view(100,70)

section 5.6, exact plot of | 1/sin z |
x=[-3:0.05:3];

y=[-4:0.05:4] ;
[X,Y]=meshgrid(x,y);

Z=X+i*Y;

w=sin(Z);

wm=1./abs(w);
meshz(X,Y,wm);view(150,70)
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20

From the location of the singularities of 1/sinz, we
see that it should be possible to obtain another Laurent
series, in powers of z,validin D, ofthe following
figure, i.e.,
1 = 0
- ZZan , 7r<|z|<27r
sinz =

Similarly, there is a third Laurent series valid in the
domain D; described by 27 < |z| <3r.

H.W.1 The exponential integral E,(a) is defined by the
improper integral

—X
e

dx, a>0
x

E\(a)= J.a
Thus,

e

—X
dx,
X

b
E(@)-E(®)=|

Ay
-+ -
~
N
428 e N
\\ \
N \
\ \
\ \
L, 5
T I2¢ '37:
/, /
D, » 4
—/ /
i 7/
Do
L -

Use a Laurent expansion for ¢ “/z and a term-by-term integration to show that

El(a)—El(b):Lné—(b—a)Jr
a
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[ #3834 p : A. David Wunsch, Complex Variable with Applications, 3" ed., Problem 18, Exercise 5.6,



Pearson Education, Inc., 2005.]

H.W.2

(a) Extend the work of the previous Example 8 to show that in the expansion

1 = u
- :chz, 0<|z<7
sinz =

we can get ¢, from the recursion formula
¢, = Ch2 Cuyg +Cn—6 ot Cq
3! 5! 7! (n+2)!
when 7 is odd. Recall that ¢, =0 if »n isevenandthat c_ =1.
(b) Find ¢5 for the series.

n

(¢) Consider the Laurent expansion 1/sinhz = Zw \@n? for 0< |z| < 7 . Find, by means of a
=

change of variable, the simple relationship between coefficients a, and ¢, of part (a).
(d) Derive a recursion formula like that given in part (a) for the a, coefficients. Proceed as we did in

Example 8.
(e) Using MATLAB, obtain figures like those in Figures (shown in the previous page) so that one can

compare |1 /sinh z| with a five-term Laurent expansion approximating this function. Use the

domain 0< |z| < asinthe previous figures and a five-term Laurent series.

[ #3g4 p : A. David Wunsch, Complex Variable with Applications, 3" ed., Problem 23, Exercise 5.6,
Pearson Education, Inc., 2005.])

<Ans.>
-

MATLAB commands for plotting |1/ sin z|

% section 5.6, plot of ’ 1/sinhz|

clear

nm=35;

d(1)=1;

for k=2:nm

for j=1:k-1
u(j)=gamma(2*k-2*j+2);

end

d(k)=sum(d./u);

end

nr=25;

r=linspace(0.05,pi-0.05,nr);

nth=91;

theta=linspace(0.2*pi,nth);

[T,R]=meshgrid(theta,r);

[X,Y]=pol2cart(T,R) ;

7z=X+i*Y ;

mm-=length(d) ;

ff=0 ;

for p=1:mm
ff=d(p)*z.~N(2*p-3)+ft;

end

% ff=1./sinh(z);

%use for figure (a)

meshz(X,Y,abs(ff)); view(135,30)

% section 5.6, exact plot of | 1/sin z|

x=[-3:0.05:3];
y=[-4:0.05:4] ;
[X,Y]=meshgrid(x,y);
7=X+i*Y;

w=sin(Z);
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wm=1./abs(w);
meshz(X,Y,wm);view(150,70)

H.W.3 One way of defining the Bessel functions of the first kind is by means of an integral:

+7
J,(w) :i cos(nf —wsin 0)d o
/4

where 7 is an integer. The number »n is called the order of the Bessel function. There is a

connection between this integral and the coefficients of z in a Laurent expansion of M2

Let

eME12)/2 _ Z CnZn, |Z| >0 (38)
Show using Laurent’s theorem that
c,=J,(w) 39)

<Hint> Refer to eq. (7). Take as a contour |z| =1. Make a change of variables to polar coordinate (z = e'? ).

Then, use Euler’s identity and symmetry to argue that a portion of your result is zero.

-1
The expression e"/?72) s called a generating function for these Bessel functions.

[ #3284 p : A. David Wunsch, Complex Variable with Applications, 3" ed., Problem 26, Exercise 5.6,
Pearson Education, Inc., 2005.]

H.W. 4 (a) Refer to Egs.(38) and (39). Show that

( 1) (W/z)n+2k
J (W)= Z doeor " "0 b2

<Hint> The left side of Eq. (38) is ¢""*/?e™/?)  Multiply the Maclaurin series for the foirst term by a
Laurent series for the second term.
(b) Let w be a real variable in the preceding. Consider the Bessel function J,(w), which we will try

to approximate using three different Nth partial sums in the series derived above. Using MATLAB,
plot on one set of axes these sums for the cases N =11, 12, and 15 for the interval 0 <w<10.

(You may wish to re-index the sum.) Notice that rather significant differences. Bessel functions are
built into MATLAB and there is no usually a need to use series approximations. Plot on the same
axes Jy(w) for 0<w<10 using the MATLAD supplied function, and compare it with the three

partial-sum approximation.
[ #3284 p : A. David Wunsch, Complex Variable with Applications, 3" ed., Problem 27, Exercise 5.6,
Pearson Education, Inc., 2005.]
<Ans.>
& MATLAB commands:
% for H.W. 4 (b)
clear
x=linspace(0,10,100);
m=[11 12 15]
for jj=1:3
=x.*0;
for k=1:nm(jj)
k=k-1;
y=(- )M (K)*(x/2)./(2*K)/(gamma(k+1)) 2+y;
end
plot(x,y); hold on
end
y2=besselj(0,x);
plot(x,y2);grid
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1.2

1

08 ~
Jo(w) N=11
06
Jo(w) and N =15 t

CA- ~cases can not be [
i distinguished 5/

0 L.
-02f
-0.4f
06 i i I i

0 2 4 6 8 10

§5-7 The z Transformations

1. Definition of z Transform
The z transform of the function f(¢), thatis, Z [ f(t )] , is given by

Z[f ()] =i F(nT)z" = f(O)+ f(T)z" + fQRT)z 2+ (1)

where T > 0. The function so obtained is called F(z). We say that Z [f(t)] =F(z).

1) Eq. (1) is a Laurent series with no positive exponent in any term
2) f(t)is defined only for t=nT, n=0,1, 2, ---.

3) The transformation is the conversion of a sequence of numbers ¢, = f(nT) (n=0,1, 2, ---)toa

o0
function of z by means of z on? "
0=

4) In some treatment of z-transform, it is convenient to take 7 =1. In this case, we have
f(n) & F(2).
5)Letusset w=1/z inEq.(1), we have

F(z)= Z[f(t)] = chw" ,for |w|<r,where r<pand p>0
n=0
Thus, Z:;O c,(1/z)" = F(z) isananalytic function of z for |I/z|<r or |z|>1/r. This means

that the z-transform F(z), defined by a Laurent series, that is analytic in the z -plane in an annular

domain whose outer radius is infinite.
6) Inversion of z-transform:

Z7'[f(2)] = f(nT)
2. z Transform Inversion Formula

_ 1 n-1 _
f(nT)_z—msﬁcF(z)z dz, n=0,12, - ()

Here, C is any circle centered at the origin with radius greater than R.

& Unit step function
u(t)y=1, t=>0 (3a)
u(t)=0, t<0  (3b)
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Example 1
Find Z [u(l‘ )] , the transform of the unit step function.
<Sol.>
It is obvious that
u(nT)=1 for n=0,1, 2, --
Thus, from Eq. (1), we have

Zlu]=2[1]=3" =" IS TILELIV

z z
Recalling that
L=1+w+w2+---,for |w|<1
1-w
With w=1/z, we have
1 1 1 z
l+—+—+-
z z* l—l/z z—1
which is valid for |1/z|<1 or |z|>1.Thus,

Z[u()]=2Z[1] =ﬁ, 2> 1

Example 2
Find the z transform of f(¢) = tu(?) .

<Sol.>
Here, f(nT)=nT for n=0, 1, 2, ---. Thus,

Z[tu(t)] Z(nT)z”—T[l 2 %+} )

Recall that

w
(1- o)
If we replace w with 1/z in the preceding and multiply both sides by 7', we have
T(l/z 1 2 3
(—):T[—+—+—+... . 2> 1.

=0+20" +30° +...., |a)|< 1.

(1-1/z) z 22 2
Comparing this equation with Eq. (4), we obtain
T(l/z T
Z|tu(t)] = riz) T

(1-1/z)> (z-1)

3. Linearity of the z transformation
If

S © F(2)
gt © G(2)
then we have

1) Z[cf(t)] = cF'(z), where c is constant.
2) Z] f(1)+g(1)|=Z] f(1)|+2Z[ g(1)]=F(2)+G(z

3) Z'[F(2)+G(2)]|=Z"[F()]+Z7'[G(2)] = f (1) + g (¢)
Example 3

Z[(l+t)u(t)]: z N 1z =zz—erTz

z-1 (2—1)2 (Z—l)2

Example 4
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If F(z)=(z+1)/2°, find Z"'[F(2)].
<Sol.>
Rewriting F'(z) asatwo-term Laurent series, we have
F(z)=(1/z)+(1/2%)
A glance at Eq. (1) shows that
f0)=0, f(T)=fQ2T)=1,and f(nT)=0, n=3

Example 5
If F(z)=(z+1)/(z-1),find Z~'[F(z)].
<Sol.>
F(z) can be expanded in a Laurent series valid for |z| >1. We have
-1)+2
F(Z):z+1:(z )+2 . 2
z—1 z—1 z—1
Now,
2 2 1 201 (1Y
== ==|1+—+|—| +---|, |z|>1
z—-1 zI1-(1/z) =z z \z
Thus,

2 2
F(z)=1+=+S+-, |z>1
z z
Studying the coefficients and using Eq. (1), we conclude that
f(O)=1,and f(nT)=2, n=>1

% Agiven F(z) does not necessarily have an inverse z transform.

0

1)If F(z) hasno Laurent series of the form Z 0cnz’” , ho inverse transform is possible.

n=

2) lim F(z)=¢, = Itmeansthat F(z) may have inverse transform.
Z—0

4. Translation properties of z transform
1) First translation formula:

It Z[ £ ()] = F(z) = i f(nT)z™", then

Z| f(t—kT)]= gf(nT—kT)z‘" = 2f((n—k)T)z-"

where recalling that f(¢)=0, ¢<0,weseethat f(nT -kT)=0, when n<k and k>0.
We now re-index this summation using m =n—k . Thus,

Z[f(t—kT)] = if(mT)z(m”‘) = z_kif(mT)z_’"
= Z| f(t-kT)|=z"F(z)

2) Second translation formula
Consider Z[f(t+kT)] when k=1.We have

Z[f(t+T)]|= 3 f(nT+T)z" = gf((n+1)T)z”

n=0

=f(T)+f(2T)z"+ f(3T)z7 +....

Adding and subtracting f(0)z in this last series, we obtain
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Z[f(t+T)]=[f(0)z+ ()2 + £ (2T)z" +--]- £ (0)=

zF(z)

Thus,
Z| f(t+T)|=2F(2)-2f(0) (1)

When k=2, we have
Z[f(HzT)}:gf(nsz)Z" = f(2T)+ f(3T)=" + f (4T) =" +
=[£(0)22+ £ (T)z+ £ (2T)+ F(3T) 2" + £ (4T) 22 +..]

zzF(z)

—sz(O)—Zf(T).
Thus,
Z[f(t+2T)}=22F(z)—zzf(0)—zf(T). (8)
General case for £>0:
Z':f(t+kT)]:sz(z)—zkf(O)—zk_l (T)—zk_zf(ZT)
— = 2f ((k=1T).

Example 6

If f(r) e“’u(z) then F(z)=z/(z- e“T) for h(t) g(0)

where g(7)=e*“"Du(r—T). Also, find
Z[ h(1)]. where h(t)=e"“Du(t+T).

Assume that a>0.
<Sol.>
Since g(¢)= f(¢t—T),weuse Eq. (6) with k=1 toget G(z). Thus,

_ z 1
G(z)=z" —= —, for |z|>eaT
z—é z—e

Since A(t)= f(¢t+T),weuse Eq. (7) to get H(z) . Noting that f(0)=1, we have

2[n()] =Lz =

z —

aT

eaT

5.  z Transforms of Products of Functions

Let Z f(t) Zcz "=F(z) and Z[g(l‘)] i z " =G(z),where c,=f(nT) and

n=0

d, = g(nT). By definition Z[ f(£)g(f)]= i f(nT)g(nT)z™" . Thus,

Z[f(t)g (t)] = icndnz_” )

Let F(z) and G(z) both bﬁ analytic in the domain |z|> R . From Laurent expansion we have
F(w)= icmw_m, |w|> R

and "

G(z/w)= Zdn(z/w)_” = Zdnw"z_", |z/w|> R,or |z|>R|w|

m=0
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Multiplying our series, we have

F( z/w ZZC "z, (10)

m=0 n=0
where we choose |w|>R and |z|>R|w|.

Refer to the figure shown on the left.
We take p > R, and we place our variable w on this

circle so that |w| = p . In Eq. (10), we will require that

|z| > Rp . Hence, the Laurent expansion in Eq. (10) is

uniformly convergent in a domain in the w-plane
containing the circle |w| = p . The following Laurent

expansion is also uniformly convergent in this domain'

1. F(w)G(z/w)= ZZ c, nZ W

27iw m=0 n=0

We can thus integrate this series term by term around |w| = p, so that

1 f(w)G(z/w .
27i (fj\W\:P w 27 Zzg} €l 2

m=0 n=0 ‘W‘p

dw. (11)

Recalling that

& 0, k=#-1
4} widw=
Iwl=p 27i, k=-1

We notice that the integrands on the right in Eq. (11) are zero except when n =m . Then,

4‘}‘ ‘ z "W fwdw =2rziz " for n=m
w=p
Thus, Eq. (11) becomes
1 F(o)G(zlw) , & i,
gg‘w‘ ) do= Z:(;cndnz P!

2ri 0]
Comparing the above with Eq. (9), we have our desired result:

Z[f(t)g ]_27”95‘@‘/) F(0)G(z/ o)

(2
In this integral, we require that |z| > Rp ,where p>R.Recall that R issuchthat F(w) and

do. (13)

G(w) are analytic for |w| >R.

Example 7
Find Z[te“’u (z)} from Eq. (13).
<Sol.>
Let f(t)=tu(t) and g(t) =e”u(t) . Thus, we have

Z[f(n]= G 1) —==F(2)

and

Z[g(1)]= m =G(2)

Notice that F(z) is analytic exceptat z=1, while G(z) is analytic exceptat z=e" . Substituting
in Eq. (13), we find
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Z[te‘"u(t)]: 1 9(}‘ w z/w

2 T w
27i ¥ M= w(w—1)" (z/w—e"")

(14)

zT 1 1
= . 4; 2 aT CiVV
27i ¥ M=p (w=1)" (z—we™)
We require o > R, where R is the radius of a circle in the w-plane outside which F(w) and G(w)

are analytic. Thus, R>1 and R>|e“”

Recall that Eq. (13) is valid for |z| > Rp . We have, for w lying on or inside the contour |w| =p,

eaT eaT

|a)eaT

:|a) <p <pR<|z|.

< |z| ,tell us that z—we*” =0 can not be satisfied on and inside our contour of

The preceding, |we“T

integration.
Using the extended Cauchy integral formula, Eq. (14) can be evaluated as

a ) 1 o zTe"
Z[te Tu(f)]—ZT da){z—a)eﬂ L_l B (Z_eaT)z .

Inverse z Transform of a Product of Two Functions
Definition of Convolution

f(t)*g(t)zgf(kT)g((n—k)T), n=0,12, - (16

Commutative property:

277 ()= X (k1) 7 ((n=K)T) =7 ()& (1)

when f(¢f) and g(¢) are zero for <0

The sum in eq. (16) need to be carried only from k=0 to k=n.

Let h(t)=f(t)*g(t)=zliof(kT)g((n—k)T),Whichdeﬁnes h(t) for t=nT .Now

2[(0))= 3| 3 (W)e((n-4)7) -

n=0|_k=0
The inner sum needs to be carried out only as faras n. Taking f(kT)=a, and g(jT)=0b,,we

have
Z[h(1)]= iiakbﬂz‘". (17)
Now Z[f(t)] = iakz_k =F(z) and Z[g(t)] = ib}z‘j =G(z). Thus,

F(z)G(z)= iakz’kibjzfj
k=0 =0
=(a0 +a,/z+a,/z’ +-~-)(b0+b1/z+b2/zz +)

= ab, + (aobl +alb0)z_l + (a0b2 +a,b, + azbo)z_2 -

Hence, we see that
F(2)G(z) =) ¢z "
n=0

where
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Cn = Zak bnfk
k=0
Comparing this series with Eq. (17), we have, finally,

Zlh(1)|=2] f(1)*g(t)]=F(2)G(z).  8)
Thus,

the 7 transform of the convolution of two functions is the product of the 7 transform of each
function,

and, conversely

the inverse 7 transform of the product of two functions is the convolution of the inverse transform of
each function.

Example 8
Using the concept of convolution, find

2
z

(z—e”T)(z—l)

Zfl

:h(nT).

<Sol.>
Rewriting the expression in the brackets and using the inverse of Eq. (18), we have

ey s

where
1 z | Z
f(nT)=2 [z—eaT} and g(nT)=Z {z—l}
Recalling that )
0 z _
o f(r)} = u(t)
and )
-1 z _  at
Z _m:| =e lxl(f)

where ¢=nT in both cases.
Taking f(nT)=e" u(nT) and g(nT)=u(nT) and performing their convolution, we get

h(nT) = geakru((n—k)T).

Now u((n—k)T)zO for k>n and u((n—k)T)zl for n>k.We can thus rewrite the
preceding as
h(nT) = Zn:eakT = i(e“T)k.
k=0 k=0

Recalling that )" p* =(1-p*")/(1-p), and taking p=e*", we have

1 _ ea()z+l)T ZZ
h(nT)=——=7"
( ) l—eaT (Z—eaT)(Z—l)
7. Difference Equation and the z Transform

Let f(nT) be a function defined for n =0, 1, 2, ---, and assume T >0.
Find the closed-form of the solution of the equation

f((n+1)T)=27(nT)=0.

given that f(0)=1.
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1) Method I:
Put n=0, f(0)=1 andobtain f(7T)=2.
Then putting n=1, f(T)=2,weget f(2T)=4.
Continuing in this way, we find
f(mT)=2", n=0,1, 2, -
2) Method II: z-transform
We perform a z transform on both sides of the given equation taking ¢t =nT, Z [0] =0,

2Z[f(nT)] =2F(z).With f(0)=1, from the translation formula, we have
Z[ f((n+DT)]=zF(2)-z

Thus, the transformed equation,
Z| f((n+DT)]|-22Z| f (nT)]=12[0]

becomes
zF(z)—z-2F(z)=0

Hence, we obtain

z

F(Z)_Z—Z

To obtain f(nT), we have
1 2 4 8 -

F(z)=—2=1l+—+—+—+...= nT)z™".

() 1-2/z z 722 2 ;f( )
Thus,

f(mT)=2".

& General form of the linear difference equation:
a f(t+NT)+a,f(t+(N-1)T)+a,f (t+(N-2)T)+--+a,f(t)=g(1). (19
Here, t=nT, n=0,1, 2, ---,and g(¢) must be defined for these values of z. N is an integer > N .

Example 9
The Fibonacci sequence of numbers was first described in the early thirteenth century by the Italian
mathematician Leonardo Fabonacci (1170-1250). The sequence is 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, ....
Each element of the sequence is the sum of the two preceding elements. Fabonacci described these
numbers in the solution of a problem in the growth of a rabbit population. The numbers arise also in
plant growth, puzzles, and in aesthetics. For n >0, the nth element of the sequence, f(n), satisfies

the difference equation f(n+2)= f(n+1)+ f(n), or

S(+2)=f(n+D)= f(n)=0 (20)
The preceding is of the form shown in Eq. (19) if wetake T'=1, N=2, a,=1, a,=-1, a,=-1.
Note that f(0)=0, f(1)=1, f(2)=1, etc. Our problem is to find a closed-form solution of Eq. (20)

by using z transform.
<Sol.>
Taking the z transform of Eq. (20), we have

Z[f(n+2)]—Z[f(n+1)]—Z[f(n)]=0
With T=1, f(0)=0, f(1)=1, we obtain
Z[f(n+1)]=zF(z2)
and
Z[f(n+2)] =2’ F(z)~z
Substituting these into our transformed equation, we have
2’F(z)—z—zF(z)-F(2)=0
from which we obtain

z
F(z2)=——
@) ' —z-1
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We expand the preceding in a Laurent series containing z to only nonpositive powers. Partial
fraction are handy here. Thus,

z 1| (452 (1-+/5)/2

ey R N YL R T BN SV

Each fraction can be expanded in negative powers of z , and we obtain
F(2)=Yc,z", |2>1++/5)/2
n=0

where

c, :ﬁ[(l+\/§)n —(1—\/5)'1}

Since ¢, = f(n), the problem is solved.
For example, the 20" Fabonacci number (7 = 20) is 6765.

8. MATLAB and 7 Transform
1) Symbolic Mathematics Toolbox in MATLAB
2) MATLAB functions: ztrans and iztrans

H.W.1 Show that Ln(z/(z—1)) is analytic in a cut plane defined by the branch cut y =0, 0<x<1.

Expand this function in a Laurent series valid for |z| >1, and use your result to show that

Z[%u(l—T)} = Ln(z/(z—l))

We define u(¢—T7T)/t=0when t=0.
[ #3g4 p : A. David Wunsch, Complex Variable with Applications, 3" ed., Problem 12, Exercise 5.8,
Pearson Education, Inc., 2005.)

H.W.2 Show that

. zsin(aT)

Z[sin(at)] =— ,
z"=2zcos(aTl)+1

[ #3g4 p : A. David Wunsch, Complex Variable with Applications, 3" ed., Problem 3, Exercise 5.8,

Pearson Education, Inc., 2005.])

|z|>l, o isreal.

HW.3 (a)If Z[f(1)]=F(z), show that

Z[e" f()]=F(ze"")
(b) Use the preceding result and the result of H.W. 2 to show that
ze”" sin(aT)
z* —2ze"" cos(aT) +e
[ #3284 p : A. David Wunsch, Complex Variable with Applications, 3" ed., Problem 16, Exercise 5.8,
Pearson Education, Inc., 2005.]

Z[eﬂ’ sin(at)Jz |z2|>e”, and a, B real

AT 2

HW.4 If Z[f(1)]=F(z),where F(z) isanalytic for |z|> R, show that
_ 1 n-1
f(nT)= —q:;CF(z)z dz

27i
where C is the circle |z| =R,, R,>R.C canalso be any closed contour into which |z| =R, canbe

deformed, by the principle of deformation of contours.
[ ﬂh&{a‘ﬁ B ° A. David Wunsch, Complex Variable with Applications, 3 ed., Problem 17, Exercise 5.8,
Pearson Education, Inc., 2005.)

H.W.5 The gamma function, written I'(z), is an important analytic function of a complex variable and is
treated at some length in next chapter. Here, as a prelude, we see its connection to the z transform.
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(a) The gamma function is defined as I'(z)=lim, IOL u” e "du , commonly written I :uz"e’”du .

Here u is areal variable, z acomplex variable, and u"™' =e “ "™ In the next chapter, we
learn that I'(z) is analytic for Rez >0. Do an integration by parts to show that

I'(z+1)=2zI(z)
(b) Show that T'(1)=1, I'(2)=1, I'(3)=2.Taking n>0 as an integer, show by induction that
I'(n+1)=n!
(¢) Show that
Z[1/T(t/T+)]=€", |z|>0.
[ #3834 p : A. David Wunsch, Complex Variable with Applications, 3" ed., Problem 19, Exercise 5.8,
Pearson Education, Inc., 2005.]

H.W. 6 (a) Use the result derived in part (c) of H.W. 5, the transform shown in the previous lecture note, and
Eq.(13) to show that

7 e—m — ee"T/z.
T(/T+1)

(b) Derive this same formula by using the results of part (a) in H.W. 3 and part (c) in H.W. 5.
[ #3g4 p : A. David Wunsch, Complex Variable with Applications, 3" ed., Problem 20, Exercise 5.8,
Pearson Education, Inc., 2005.)
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